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Abstract

We propose a framework for the systematic analysis of mobile phone data to identify rele-

vant mobility profiles in a population. The proposed framework allows finding distinct human

mobility profiles based on the digital trace of mobile phone users characterized by a Matrix

of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized

description of individual trajectories that enables multi-scale representations along time and

space, which can be used to extract aggregated indicators such as a dynamic multi-scale

population count. Unsupervised clustering of individual trajectories generates mobility pro-

files (clusters of similar individual trajectories) which characterize relevant group behaviors

preserving optimal aggregation levels for detailed and privacy-secured mobility characteri-

zation. The application of the proposed framework is illustrated by analyzing fully anon-

ymized data on human mobility from mobile phones in Senegal at the arrondissement level

over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolu-

tion resulted in the discovery and characterization of seasonal mobility profiles related with

economic activities, agricultural calendars and rainfalls. The use of these mobility profiles

could support the timely identification of mobility changes in vulnerable populations in

response to external shocks (such as natural disasters, civil conflicts or sudden increases of

food prices) to monitor food security.

Introduction

Measuring human mobility is critical to understand population wellbeing. Mobility is charac-

teristic of how people live and how people react and adapt to external conditions and events

including climatic, social, economical or political factors [1]. Mobility is key in some regions
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where the agricultural production has been adapting to the changing environment. Population

mobility patterns change in reaction to spatial and time variability of rainfall, or are modulated

by the increasing attraction of cities compared to rural regions. At the same time, the interna-

tional community has made a call for the use of new data sources and analytical methodologies

to implement the new sustainable development agenda and support humanitarian action in

what has been called the data revolution [2]. Recent developments in the scientific community

and new sources of empirical social data (eg. social network platforms, applications using geo-

location or mobile phone records) have enabled high spatial and temporal resolution analysis

of human mobility [3–6].

The application of such type of analyses to support sustainable development and humani-

tarian action offers innovative solutions to existing challenges, where the access and use of

data on human mobility represents an extraordinary opportunity to support programmes and

policies with relevant information. For instance, social groups with different socio-economical

conditions are prone to generate different mobility patterns to external shocks such as food

crises which may reveal their coping strategies.

Due to the worldwide extensive penetration of mobile phones, information extracted from

aggregated mobile phone meta-data has shown to be useful for development and humanitarian

applications such as to model quantify and predict patterns of disease outbreaks (eg. cholera

or malaria) [7, 8], understand social crises and riots [9] or natural disasters [8, 10]. The value

of this data for emergency services in the aftermath of an earthquake has been shown in differ-

ent contexts and geographies including Haiti [8, 11], Nepal [12], Mexico [13] or Japan [14].

Mobile phone data analysis can help to develop early warning mechanisms as well as to esti-

mate the response of the population to external shocks in order to improve humanitarian

action based on real time and accurate data [15].

The movements of a population also reflect other organizational aspects such as the popula-

tion livelihoods, coping strategies and social safety nets [16]. The characterization of these

social phenomena requires the tracking of migrants over sufficiently long periods of time (in

the present application,the data availability allows a one year range analysis). Since this type of

information may be sensitive, specific privacy-preserving schemes are also required to mini-

mize individual details by optimizing the aggregation level and avoiding potential risks such as

de-identification [17–19]. Aggregation schemes of mobility based on Origin-Destination (OD)
matrices [20] have been extensively used, but aggregation of users’ activity prevents from con-

sistent observation over sufficiently long periods of time (even if OD matrices are available for

different instants and/or periods of time, their respective aggregations may not correspond to

the same individuals; therefore, any attempt to combine them involving the time variable

would not provide meaningful population results).

Hence, in this paper we propose a framework for systematic analysis of mobility which

allows its characterization with flexible time, space and population aggregation capabilities.

We introduce a formalism to frame and process mobile phone data containing anonymized

and aggregated geographical and temporal information. In this framework, trajectory data is

organized in a matrix representation where the geospatial (2D), temporal (T) and population

(P) variables define the main data dimensions. These data are processed (via interpolation or

aggregation schemes) to create a regularized Matrix of Individual Trajectories (IT-Matrix),

which provides geolocations (with a unified resolution) so that each column is associated to

the same timestamp for all rows of users. This representation allows for a systematic and con-

sistent rescaling and/or aggregation on the matrix dimensions to quantify characteristic multi-

scale patterns and indicators of human mobility. This work also proposes the selection and

unsupervised clustering of some IT-Matrix rows to extract population groups sharing similar

mobility behaviors and allowing to profile mobility at different resolution levels.

Mobility profiles from mobile phone data. Application in food security

PLOS ONE | https://doi.org/10.1371/journal.pone.0195714 April 26, 2018 2 / 20

Funding: PJZ wants to thank the financial support

of the Ministerio de Economı́a y Competitividad of

Spain (via projects MTM2010-15102, and

MTM2015-67396-P) and Cátedra Orange at the

ETSI Telecomunicación in the Universidad
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We have applied this framework to understand different human mobility patterns related

to livelihood zones in Senegal [21] (See S1 Fig) based on data provided in the second Orange

D4D Challenge [22]. A livelihood zone is an area where people generally have the same options

for obtaining food and income and engaging in trade. They are determined (see [21]) by fusing

geographical and/or physical information such as land cover and land use, with other socio-

economic information such as census data, population density and infrastructures. Typically,

people inside the same livelihood zone share options for obtaining food, income and market

opportunities. However, there are multiple population groups in the same zone with different

mobility signatures. Therefore, it is of interest to understand the different group behaviors

existing in the livelihood. The appropriate aggregation of the IT-Matrix reveals the characteris-

tic signatures of the population dynamics based on time-varying population count [23] in the

Senegalese livelihood zones [21]. The corresponding mobility profiles show the time relation-

ship between population mobility and environmental conditions such as the onset of the rainy

season, or other indicators such as the seasonal agriculture calendars for each livelihood zone.

Available seasonal calendars [21] are estimated for an average year by combining quantitative

and qualitative data analyses, based on two types of data collection methods: primary (house-

hold surveys, informant interviews, etc.) and secondary (literature review, computing available

statistics, etc.). These prototypical calendars can be refined to estimate actual activity cycles

using other up-to-date observed data sources such as mobility information. The present work

is a step towards estimating in real time the seasonal activities that are taking place (e.g. labor

migration levels in the non-planting or harvesting seasons). Such analysis and insights could

be relevant to derive food security monitoring indicators and to inform food security analysis

and assistance targeting.

Materials and methods

A framework to select and cluster mobility profiles

We propose a general framework (see Fig 1) to organize and classify human mobility patterns

based on individual trajectories constructed from mobile phone data. This type of data is gath-

ered and stored by cell phone carriers (in our case, Sonatel) during communication events

between their clients, providing the so called Call Detail Records (CDRs).

Mobile phone Data Sets. Call Detail Records conform a digital fingerprint of both the

communication actions and the approximate geolocation where the events took place. Thus,

this type of data has been considered a valuable source to understand human behavior such as

social interactions (modeled by social networks) and mobility [3, 25]. Since analyzing CDRs

entails the risk of violating users’ privacy, this data requires to be anonymized, aggregated and

sometimes also quantized and/or time range limited before being used for social and public

purposes. Anonymization encripts users’ personal identifiers from the CDRs whereas aggrega-

tion, quantization and range limitation prevent the identification of individuals from their

behavioral patterns [18, 19].

The D4D Challenge initiative released mobile phone Data Sets (DS), derived from the

CDRs of the main provider in Senegal, containing information of the location, timestamp and

numeric identifiers for anonymized users’ references associated with each record from a

mobile phone of the operator [22]. This data does not gather overseas visitors, which may be

of interest (specially those visiting the country in particular months), and it corresponds to just

about 1% of the total population. Still, such percentage of real measurements represents much

more information than estimations made from some primary and secondary data sources

years ago. The DS provided in the D4D Challenge show different aggregation levels as different

approaches to deal with privacy and applicability. DS-1 provides the total number of calls

Mobility profiles from mobile phone data. Application in food security
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which are routed through each pair of antennas every hour; hence, besides being space quan-

tized at antenna coverage region resolution, it is time and population aggregated at the hour

level. DS-2 is population disaggregated providing the antenna and time of calls (with 10 min-

ute quantization) for a set of users, but it is time-range limited (15 days). DS-3 is also user dis-

aggregated and provides 10 minute time quantized call records for a whole year, but it is

space-wise quantized at a coarser set of geographical regions called arrondissements (as of 2013

there were 123 of them [22], each one gathering several antenna coverage regions). Other ini-

tiatives have also released mobile phone data based on different aggregation strategies such as

gridded and aggregated mobile phone data descriptors [26].

Optimal aggregation level and strategy depend on the application and risk [19]. In this

work, D4D DS-3 was employed as it offered one year mobility at the cost of a coarse spatial res-

olution—Senegalese arrondissement -. Concretely, DS-3 provides the geolocation (denoted by

the 2-dimensional variable 2D) corresponding to N = 146,352 phone users (belonging to popu-

lation set P = {1, . . ., N}) for a whole year (where the set of all possible time values in such

range is denoted by T) with geospatial quantization into r = 123 disjoint arrondissements Ri,

i = 1, . . ., r. Hence, the number of levels (i.e., the resolution) on the 2D and P variables is fixed

(r and N, respectively), whereas resolution along the T variable changes from one user to

another. As shown later, information in the 2D × T × P space will be regularized, quantized or

aggregated into different geolocation×time×population levels, allowing a multi-resolution

description of mobility.

Fig 1. Data processing work-flow. D4D Dataset is processed for computation of IT-Matrix, which is processed to select and cluster

mobility profiles. Finally, consistency assessment/fusion of profiles with other sources of data, O(l, t) (which depends of the l
location and t time variables), such as livelihood calendars provided by WFP (World Food Program), NDVI (Normalized

Difference Vegetation Index [24]) and Rain variables. Dark green rectangle represents information sources which are hidden or

unknown in this study: raw Call Detail Records (CDRs); h(t), user home location; E(l, t), other external directly measurable

variables (such as evolution of crops); and I(l, t), other social indicators (such as market prices).

https://doi.org/10.1371/journal.pone.0195714.g001
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IT-Matrices: A trajectory-based representation of mobility. In this Section we illustrate

the construction of an Individual Trajectories Matrix (IT-Matrix) as a consistent spatio-tempo-

ral discrete representation of human mobility at the individual level. For each individual, her/

his spatial location along time will be denoted as her/his trajectory. Precisely, the trajectories

during the whole time-period T for a set P of N anonymized individuals, are characterized via

four variables: (la, lo) 2 2D representing user’s latitude and longitude, t 2 T representing a

time instant and p representing the user identification. Hence, for each p-th population indi-

vidual we can define the position vector xp(t) = (lap(t), lop(t)) which represents her/his spatial

position at time t.
Unfortunately, for each trajectory xp(t) only a sampled and quantized discrete version is

gathered in the CDRs, conditioned by the corresponding individual phone usage. The observa-

tion of the trajectory happens at the timestamps tp,j where j indexes each instant of time when

the user p performs a call event, generating a record; this leads to a non-uniform and user-

dependent sampling process. In addition, the records are registered at the communication

antenna level; the antenna locations define an initial partition of the space which gets coarser

in DS-3 when only the user location arrondissement is provided (each arrondissement gathers

several antennas). Accordingly, a space quantization Q(xp(tp,j)) = Ri if xp(tp,j) 2 Ri has been

imposed, where each arrondissement region Ri belongs to a final partition set R = {R1, . . ., Rr}).

Hence, for each phone user we finally have the vector:

qp ¼ ½Qðxpðtp;1ÞÞ; . . . ;Qðxpðtp;npÞÞ�: ð1Þ

Obviously, the quality of the information provided by qp is conditioned by the sampling

rates and quantization resolutions. Depending on such factors, one may be able to compute

a good trajectory estimator x̂pðtÞ or at least to compute time quantized or aggregated ver-

sions of it. For instance, the information provided in the D4D Challenge DS-3 contains a

set qp, p 2 {1, . . ., N} as defined in Eq (1), where each vector qp may have a different length

given by the number of events registered for user p.

In general, the analysis of trajectories can be efficiently performed when event time vec-

tors are standardized to the same length, each component representing information associ-

ated with the same time or period of time (minutes, hours, days, months, etc.). Note that

trajectories of different lengths and resolutions cannot be jointly processed in a direct and

efficient manner. Hence, we propose to regularize the time sequence of events for each qp to

the required finer time resolution, so that we obtain a time series zp which has the same

length NT (number of records along time) for every p. When the desired time scale resolution

is coarser than the available data in qp, a sub-sampling scheme must be implemented. For

instance, a temporal window (according to the desired time resolution) can be employed so

that the most frequent location within the window is selected (loosely speaking this may be

called a time aggregation procedure). Alternative application dependent procedures can also

be employed for this aggregation [27, 28]. On the other hand, if the desired time resolution is

finer than the available data, some interpolation-based scheme is required. For instance, if

a user does not have any registered events in a period of time, the geolocation value of the

closest previous active period of time may be assigned. In this work a regularization to daily

resolution will be performed which implies estimating a daily user preferential location, pro-

viding vectors of length 365. This is motivated, as mentioned above, by the fact that trajecto-

ries of different lengths and cannot be jointly processed in an efficient manner. As it will be

shown below, this time regularization will neither miss much information (when sub-sam-

pling) nor add a significant percentage of spurious data (when interpolating). Note that both

Mobility profiles from mobile phone data. Application in food security
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procedures tend to neglect short time-scale movements which may not be relevant for our

mobility analysis purposes.

Concerning space resolution, quantization of xp into qp (or zp if time regularization has

been previously performed) is usually based on the definition of different geographical regions

Ri 2 R so that a single variable (or label) characterizes the quantized information. Furthermore,

regions in R may be aggregated into larger areas which represent a coarser space quantization

Q, by simply substituting each Ri by the larger region Qi which contains Ri. Note that such

aggregation may be performed before or after the time regularization. In general, time regular-

ization and space aggregation can be combined in different ways, and the order in which they

are applied may lead to alternative time/geolocation characterizations.

In this work, time regularization at the desired resolution was performed first; then, a

space quantization at the desired level was carried out. Note that if space quantization can be

modeled by a single variable, the whole set of trajectories for all users can be represented via a

N ×NT Individual Trajectories Matrix (IT-Matrix), where each row defines an individual user

trajectory, each column represents the time instant (or period), and each value indicates the

corresponding space location. If the range of values of such space location is also reduced to a

finite set of size ND, the same information could be represented via a 3D binary tensor of size

N ×NT ×ND.

The high time resolution (in our case, daily) IT-Matrix allows for a straightforward con-

struction of the IT-Matrices corresponding to coarser time resolutions. This can be done, for

instance, by assigning to the new coarser time period (week, month, etc.) the most frequent

value found in the days corresponding to such span of time. In our case, besides daily resolu-

tion, weekly, bi-weekly and monthly resolutions were also performed (leading to row vectors

of length 365, 53, 24 and 12 respectively). For the sake of brevity, the highest resolution IT-Ma-

trix will be simply referred to as the IT-Matrix, whereas the lower resolution IT-Matrices will

be referred to as lower resolution matrices.

The IT-Matrix and the lower (time and space) resolution matrices which can be derived

from it provide estimates of the user preferential location with different time and geographical

resolutions, whose information is crucial for many types of applications, including the one

illustrated in this paper. For instance, daily regularization provides for each user p the daily

preferential arrondissement (DPA) which can be used as an estimation of the daily home loca-
tion hp. In general, the classical problem of estimating this latent variable hp can be addressed

using different schemes such as the simple computation of the most visited location during the

whole day (employed in this work). For populations with high phone activity, such estimates

can be refined when considering the specific hour at which the user visits each location (e.g.,

periods from 7pm to 7am are more likely to correspond to home location) [27], [28]. Similarly,

for the application presented in this paper, a monthly regularization provides a monthly pref-

erential arrondissement (MPA) estimate for each user. The upper row in Fig 2 shows different

resolution IT-Matrices of the different temporal aggregations for the arrondissement spatial

resolution (visualization has been qualitatively improved by normalizing the color scale within

each arrondissement). In addition, using the D4D contextual data (in shapefile format) to

aggregate the population from 123 arrondissements to 13 livelihoods zones [21], as illustrated

in S2 Fig, allows to obtain the convenient monthly preferential livelihood (MPL) zone for each

user. The lower row of Fig 2 illustrates the IT-Matrices of the different temporal aggregations

for the livelihood spatial resolution (again the color scale has been normalized within each

livelihood).

Trajectory selection: Geolocation and basic mobility properties. Aimed to analyse

human mobility between different regions, a first stage selection of users can be performed,

based on both the regions they visit and some basic predefined mobility properties. Although

Mobility profiles from mobile phone data. Application in food security
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the results of this selection may depend on the time and space resolutions employed, here

monthly resolution time series and livelihood (or arrondissement) zones will be considered to

illustrate the proposed methodology. If we consider all users who have visited a given liveli-

hood zone for some month (first selection criterion), very different behaviors can be found,

ranging from those users who visited the livelihood zone only during one month (occasional)

to users who stayed in such livelihood zone during all 12 months of the year (non-moving).

For each livelihood zone, a histogram can be computed to represent the ratio of visitors as a

function of the number of months stayed in such livelihood zone (see S3 Fig). This informa-

tion allows to quantify the proportion of people that are removed when performing any popu-

lation selection based on their mobility profiles.

Fig 2. Multi-resolution population counts normalized within each region (derived from IT Matrix). First row: preferential arrondissement (PA): column 1, Daily PA;

column 2, Weekly PA; column 3, Biweekly PA; column 4, Monthly PA. Second row: preferential livelihood (PL): column 1, Daily PL; column 2, Weekly PL; column 3,

Biweekly; column 4, Monthly PL. Color intensity (from black to white) reflects normalized population count within each region.

https://doi.org/10.1371/journal.pone.0195714.g002
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For example, since we are targeting some specific moving users, one can remove non-mov-

ing users. In addition, in order to detect unusual movements, if we are given an IT-Matrix

with arrondissement space resolution, users for which the geographical distance correspond-

ing to their change of arrondissement does not surpass a given ratio (e.g. 3) with respect to

their radius of gyration (an estimate of the user expected moving distance which can be

obtained from the bandicoot toolbox [29]), can be also removed as “regular travelers”. The dis-

tance corresponding to an arrondissement change was computed as the distance between the

respective centroids; hence, this selection is very sensitive to the size of the involved arron-

dissements. Finally, users belonging to arrondissements labeled as urban areas (e.g., based on

night-time light levels obtained from Satellite Data [30]) may also be removed if required.

When targeting a specific livelihood zone (L), several parametrized temporal constraints

motivated by our final objective can be used for further selection such as: 1) the user must have

stayed at least a given minimum number of consecutive months in the target L; 2) the user

must have not stayed more than a given maximum number of months in the target L; 3) the

user must have stayed at least another given minimum number of months in some other

L; and 4) the user must have stayed in L at a specific period of the year (when looking for spe-

cific types of mobility profiles, such as the ones related to agricultural events). The selection

parameters can be chosen keeping in mind the percentage of discarded people so that the rep-

resentativeness of the moving population is ensured (see S3 Fig). In the following, a final stage

classification of the selected mobility profiles is presented.

Final classification of mobility profiles via unsupervised clustering. The final step of

the analysis is aimed to divide the initial dataset containing the whole population into different

population groups, where each group has a distinctive mobility pattern. For this purpose an

unsupervised clustering algorithm will group together the individuals represented by their

mobility profiles. Note that when individuals are characterized by their movements at different

time and/or space resolution levels, the resulting population subgroups with a distinctive

mobility pattern may change. Since IT-Matrix gathers a heavily quantized space description of

mobility behavior (both before and after binarization), its simplified structure allows for a

direct application of classical clustering schemes to the mobility profile vectors, avoiding the

use of specific tools for time series clustering [31, 32].

Different time and/or space resolution levels may lead to different clustering or partition

outcomes. The appropriate time scale (monthly, biweekly, weekly, daily) is determined by the

type of mobility patterns we want to detect and by the computational limitations inherent to

clustering techniques for high-dimensional data [33–35]. In order to detect seasonal livelihood

related behaviors such as workforce flows to balance urban and rural jobs, monthly or

biweekly time resolutions seem appropriate. Note that a weekly resolution may capture quite

ephemeral movements for our purpose and it leads to high dimension (54 weeks) vectors.

We illustrate the processing scheme only for monthly resolution profiles representing liveli-

hood zones, since the objective is to characterize seasonal behaviors related to the livelihood’s

production means and coping strategies. The resulting MPs are integrated with other sources

of data (to be considered below) also provided with these levels of time resolution. Hence,

NT = 12 so that the corresponding IT-Matrix will be composed of N rows of 12-dimensional

vectors whose components provide the monthly preferential livelihood (MPL) of the corre-

sponding user.

The selection stage outputs a set of users who have visited each livelihood zone as moving

population; then, their MPL are binarized to simply indicate for each month if the user is or is

not in the livelihood zone under consideration. These binary mobility profiles serve as a sim-

plified and normalized sub-matrix for each livelihood zone that can be classified into different

groups attending to their similarity, allowing interpretations about the inwards and outwards

Mobility profiles from mobile phone data. Application in food security
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mobility across livelihoods. For instance, one can observe a significant population decline dur-

ing rainy season on the eastern livelihoods of Senegal.

In order to classify the selected and binarized MPL, different clustering schemes were con-

sidered depending on the type of distance defined between vectors and the clustering proce-

dure. In our application, Jaccard distance [36, 37] was selected as the most appropriate for

quantifying the targeted similarity between binary patterns. Hierarchical clustering (most suit-

able for binary vectors) was finally employed, where different distance criteria between groups

(Ward, average, complete) provided similar results. The resulting dendrogram tree can be cut

by a maximum number of representative classes for each livelihood zone, where each cluster

stands for a mobility profile class within the population that has occupied the target livelihood

under the imposed constraints.

The different clusters of trajectories provide consistent mobility profiles in the population.

These profiles may be fundamental to understand social behaviors (e.g., to outline socio-eco-

nomic profiles) and to characterize population movements due to seasonal changes or large

scale events. In the following Section we analyse the relationship between these profiles and

other measurements such as external variables or social indicators.

Integration of other data sources for assessment of consistency and

contextual analysis

As a complement to the information derived from the CDRs, there are additional variables

which can be estimated from other data sources, and which may serve for checking the consis-

tency of our analysis and/or for characterizing their effect in user mobility. These variables can

be classified into External variables, E(l, t), and Indicators, I(l, t) (see Fig 1). External variables

refer to directly measurable variables which affect user behavior and depend on geographical

location l and time t, such as rainfalls, evolution of crops (e.g., variables derived from NDVI),

holiday calendars, etc. gather other human derived variables with social information which

may be relevant for the work objective, such as source income calendars, market prices (in

location l at time t), or measurements related to food security as the food consumption score

which measures diversity and frequency of food groups consumed by populations [38].

Although the information provided by mobility profiles has usually different resolution

scales (richer in time and coarser in space) than the information available from external vari-

ables or indicators, such profiles and/or those variables or indicators can be filtered and/or

projected (via appropriate quantizations or aggregations on the 2D × T × P space) to compute

correlations among them, as a way to partially assess the consistency of the profile analysis (see

again Fig 1).

Software tools

In the course of this work a Spark cluster with a HDFS storage system has been employed to

digest and analyze the data with pySpark [39]. Clustering of mobility profiles has been per-

formed with the pySpark MLlib library [40], while preliminary analysis was performed using

the corresponding R libraries [41].

Results

Multi-resolution dynamic population count from IT-Matrices

We used the D4D DS-3 dataset (see Materials and methods) to build the highest resolution

IT-Matrix containing complete trajectories of N = 146,352 users during 2013. The trajectories

were regularized from the original time resolution of 10 minutes to obtain a daily location

Mobility profiles from mobile phone data. Application in food security
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along the year, comprising the aggregation of daily activity and the interpolation of missing

days. Thus, the derived highest resolution IT-Matrix discriminates among ND = 123 Senegalese

arrondissements, with a daily resolution, leading to the daily preferential arrondissement

(DPA) IT-Matrix of size 146,352 × 365 × 123.

As mentioned above (Materials and methods), different mobility patterns can be detected

depending on the time resolution employed; hence, such time resolution will be selected

according to the targeted objectives and the intrinsic limitation of mobile data (e.g. time

between calls). In our case, since we are characterizing agriculture related movements at coarse

spatial resolution and we are interested in seasonal mobility, we estimated appropriate to select

bi-weekly and monthly resolution: there is enough signal in the mobile data and capturing

mobility phenomena few weeks in advance or in retard could support implementing policy

and programmes. The DPA IT-Matrix was further quantized in time by computing the most

used location by month to generate the biweekly and monthly (the relevance of these two time

resolutions has been explained above) preferential arrondissement (BPA and MPA) IT-Matrix

of size 146,352 × 24 (or 12 resp.) with values in {1, . . ., 123}. In addition, we quantized the geo-

location by assigning each arrondissement to its corresponding livelihood zone (see S1 and S2

Figs and S1 Note for details). This geographical transformation enabled for an agriculture

related characterization of the users’ geolocation, reducing also the dimensionality to obtain

the DPL, BPL and MPL IT-Matrices of size 146,352 × 365 (or 24,12 resp.) with values in

{1, . . ., 13}. Thus, the systematic construction of IT-Matrices led to a multi-resolution repre-

sentation of human mobility in Senegal for 2013.

Provided a temporal regularization of trajectories, each IT-Matrix implicitly defined a con-

sistent dynamic population count at the corresponding geographical and temporal resolutions.

Fig 2 shows dynamic population counts as 2D images with hot colormaps. The spatial quan-

tization filtered out local patterns of each specific arrondissements preserving main landmarks

and abrupt changes along time (figures first row vs. figures second row). The temporal quanti-

zation (figures first column vs. figures second, third and fourth columns) removed the short-

time landmarks while keeping changes between longer periods (weeks, biweeks and months).

A spectral analysis of daily IT-Matrix sequences shows that low frequencies prevail so that

time quantization preserves most of the information (specially the seasonal-related one we are

interested in). The temporal and spatial quantized population count from the MPL IT-Matrix

provided a simplified image of the seasonal population movements with distinctive patterns

for each livelihood zone (L).

The MPL IT-Matrix was used to further understand the human mobility flows in the coun-

try, since it provides a monthly state of the population distribution in the livelihoods together

with the temporal evolution of the livelihoods occupancy. This spatio-temporal resolution was

convenient to understand seasonal migration related to agricultural calendars and represent

the migration in terms of month-livelihood population count. The count variations repre-

sented by their z-score provided the normalized seasonal signatures for each livelihood zone

(Fig 3). These signatures were used to assess the impact of the interpolation of missing days by

the IT-Matrix temporal regularization (Materials and methods). Considering that the D4D

DS-3 was already filtered to contain users that were active at least for 256 days during 2013

[22], the possible distortion caused by interpolation was initially limited by the D4D Challenge

protocols.

We compared the population count of the DPL IT-Matrix with the non regularized version

of it to assess the effect of interpolating missing days of activity in the original DPA IT-Matrix

in terms of the added users by day in each livelihood by the interpolation (Fig 3 and S4 Fig).

The difference between the signatures indicated that the mean bias effect of the interpolation

was upper limited to a 8 − 10% (S4 Fig); this bias happened mostly in the first two months of
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the year due to the lack of previous temporal information, so that missing data in the initial

days of the year was filled up backwards with the recorded value of the first active day (S4 Fig).

However, the variations of both population counts showed similar trends and peaks as illus-

trated in Fig 3. As mentioned above (Materials and methods) such interpolation of missing

days was performed by using the last known position of the user. Note that for non-interpo-

lated data valleys in the population count of a given livelihood zone are associated with either

temporary suspension of communication activity or a temporary displacement to another

Fig 3. Dynamic population counts obtained from regularized DPL of IT-Matrix. Line colors follow the color code of livelihood zones maps in S1 Fig.

https://doi.org/10.1371/journal.pone.0195714.g003
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livelihood zone; the interpolation scheme would fill such valleys assuming the user stays in the

same livelihood zone unless he/she moved and called from other livelihood zone. The gradi-

ents observed in both population counts (non-interpolated and interpolated) suggest that

indeed users made calls when leaving their livelihood zones. Similarly, peaks were preserved so

that short-term mobility due to holidays was also captured since there were calls before, during

and after the event. Hence, the bias introduced by the regularization of the trajectories for the

D4D DS-3 was considered negligible to study patterns of seasonal mobility.

The DPL dynamic population count (Fig 3) revealed both short-term events and longer-

term trends. Regarding yearly trends, it is observed that most rural livelihood zones (L 10-13)

suffered a severe population reduction during summer. On the other hand, Dakar (L 1)

showed an increase of population during summer and a sharp gap by the end of it, suggesting

that it attracts rural population during such period of the year. Livelihood zones 2-7 showed

stationary patterns mainly characterized by peaks corresponding to holidays. Other short-

term events were significant in livelihood zones 8 and 9 where one can see landmarks as peaks

of high population at the beginning and end of this season corresponding to holidays.

Seasonal human mobility patterns in livelihood zones through mobility

profiles

Representativeness of moving population. Provided a constant total population due to

the regularization, the counts were assumed to be modulated by population movements. For

characterizing the moving population ratio, different selection or filtering criteria might be

applied (Materials and methods). We explored the distribution of users’ occupancy in each

livelihood zone (S3 Fig). This distribution showed higher concentration of very short-time vis-

itors or permanent residents and a more spread mid-term population that contributed to the

modulation of the dynamic population count. Therefore, we applied a simple threshold-based

selection of the population: occasional visitors in a livelihood zone (1 month) contributed to

a 10% of the dynamic population, while permanent residents (12 months) conformed a 40

− 50% in most of the livelihoods and around a 70% of the population in Dakar (livelihood 1 in

Fig 4). Moving/migratory population (2 to 11 months) represented the remaining 40 − 50% of

the population of rural areas (livelihood zones 2-13—Fig 4).

Moving visitors in Dakar represented a 25% of the population in the city, which is still

larger than the total population of any livelihood zone (Fig 4). The regularized trajectories

showed more percentage of permanent residents than the original data, implying that the

(interpolated) missing days in CDRs will more likely correspond to users with scarce mobility.

This conclusion supported the results from Fig 3 and the previous assumption of the bias

introduced by temporal interpolation being negligible.

Mobility profiles of livelihoods. The classification by mobility profiles (MPs) of the mov-

ing population in the livelihood zones (2-11 months of occupancy) was performed to quantify

the diversity of mobility patterns (see Materials and methods). The scheme of the process to

obtain the MPs is shown in Fig 5. The classification of the binary IT-Matrix corresponding to

each livelihood zone into k mobility profiles provided k dynamic population counts within the

livelihood zone (Fig 5 illustrates the case for k = 4). Several clustering techniques combinations

were compared, the results being less sensitive to such techniques than to the employed time

resolution.

Mobility profiles and agriculture monitoring. Mobility profiles were assessed and evalu-

ated with external data sources of environmental and agricultural variables (Materials and

methods). Satellite remote sensing is widely used in agriculture monitoring as it is particularly

suitable for providing a timely and accurate picture of crop status and conditions over large
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areas with high revisit frequency [42]. The time series profile of the NDVI index (see S2 Note)

delivered critical information on the phenological dynamics of an agricultural landscape

(start of the season, peak of the season, start of senescence, etc.) [43, 44]. Rainfall estimations

obtained from the NASA-TRMM project [45] data were processed and aggregated in a coarse

resolution for a temporal indicator of the rainy season (see S2 Note). We integrated these vari-

ables with the mobility profiles (Fig 6, k = 3, yellow, red and orange) for a rich description of

seasonal dynamics in the livelihood zones. Rainfalls onset and peak (Fig 6, cyan) preceded the

vegetation index (Fig 6 black) whose peak was reached in the month after the peak of rainfalls.

The onset of rainfalls in June-July triggered the change of the most significant MP in the rural

livelihood zones indicating large outwards mobility from rural areas at the beginning of the

rainy season.

Finally, correlations of the different MPs with source income calendars [21] derived from

households surveys were also computed. No clear correlations were found so that the utility of

such calendars as a possible ground-truth static information of the crop periods in the liveli-

hood zones remains an open issue. Calendars corresponding to livelihood zone 6 and the cor-

responding obtained MP can be seen in S4 Fig. Data corresponding to further years would

help to clarify this issue.

Discussion

The proposed framework of human mobility analysis based on IT-Matrices enables for a flexi-

ble time-space characterization of seasonal or event related behaviors. This approach estab-

lishes a multi-scale framework generalizing approaches based on OD-Matrices that have been

proved useful for the aggregated analysis of social events or urban transportation. The regulari-

zation procedures when generating IT-Matrices efficiently deal with missing mobility infor-

mation due to non-regular use of mobile phone while preserving the main information

concerning population mobility, as illustrated in the comparative dynamic population counts

Fig 4. Representativeness of moving population. Permanent (non-moving), occasional visitors (1 month) and

moving/migratory (2 to 11 months).

https://doi.org/10.1371/journal.pone.0195714.g004
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and statistics (Fig 4). The robustness of the mobility analysis in terms of the similarity between

population counts when interpolated and non-interpolated trajectories are employed suggests

that mobility and phone activity are associated: undersampled trajectories tend to correspond

to non-moving population, so that most part of the population movements are observed

through phone data even in rural contexts, provided that only users performing a minimum

number of calls during the year are considered. However, these results may depend on the

aggregation and sampling procedures applied to CDRs. Therefore, further studies with ground

truth data corresponding to population movements are required to asses the minimum sam-

pling rate necessary to properly account for people’s mobility.

Selection and unsupervised classification of the trajectories led to the definition of mobility

profiles (MPs) as a privacy-safe, still detailed and descriptive strategy to disaggregate different

mobility patterns. The comparative dynamics between the MPs and environmental (rainfall)

and crop indicators (NDVI) allowed to quantify and interpret the mobility patterns during

2013. It is important to note that, in this work, raw data corresponds to a provider with a mar-

ket share over 60% of the population, representing a quite complete dataset not as limited and

biased as in other CDRs analysis projects.

Fig 5. Classification of moving population. A) Binary codification of IT-Matrix (detailed user trajectories) corresponding to each

livelihood zone. B) Hierarchical clustering based classification of binary vectors providing the relevant groups of mobility profiles

corresponding to each livelihood zone.

https://doi.org/10.1371/journal.pone.0195714.g005
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The application example illustrated in this work was motivated by the need of analyzing

and quantifying the role of mobility patterns in the communities lifestyles and their access to

basic resources, using a more precise and up-to-date information (the one provided by the

CDRs) than the ones employed previously (polls, a posteriori social indicators, etc.).

The volume and timing of the arriving and leaving workforce in agricultural areas could

potentially be an interesting indicator on the expected production and harvest time. A high

demand in workforce at the beginning of growing season could for example indicate in

advance large (expected to be successful) planted areas, while lower workforce than usual at

the end of the season could indicate lower production. Since workers try to maximize their

income by balancing rural and urban jobs depending on the expecting labor demand, rural

to/from urban areas mobility becomes a key indicator. In this sense, the correlation analyses

performed between mobility patterns and Source Income Calendars can be used to define a

baseline behavior, provided several years of data are available; this way anomalous mobility

patterns could be detected almost in real time. In addition, although the antenna density may

be too low for characterizing mobility around rural markets, the analysis of the access to urban

Fig 6. Seasonal mobility profiles in each livelihood zone. They are clustered with k = 3: yellow, red and orange. Each curve represents z-scored values of the population

count Livelihood zones 1-13 (see S1 Fig) are ordered up-down, left-right. Cyan curves show the rainfall estimations averaged by livelihood zone, whereas black curves

show the NDVI estimation averaged by livelihood zone. Both rain and NDVI curves have been rescaled to fit the scale of the population count signatures.

https://doi.org/10.1371/journal.pone.0195714.g006
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centers could be an interesting alternative. Therefore, with the support of additional data, this

new approach to unravel and analyze mobility patterns could be very helpful to supervise the

evolution of production means of Senegal in order to monitor vulnerable communities.

One of the limitations of this study is the availability of one year of data. Studies comprising

several years of data with different environmental situations are necessary to understand and

define how a systematic mobility analysis could be deployed as a real-time tool for food secu-

rity. Such tool could be used as an early warning mechanism via comparison with long term

averages.

Conclusion

This work shows the feasibility of processing phone data to obtain a systematic identification

of population mobility profiles as a tool to understand population seasonal mobility behaviors

with a flexible characterization of users mobility at different aggregation levels in both space

and time. Clustering individual trajectories into different mobility profiles allows to under-

stand how different groups of people behave at longer temporal scales (e.g, during a year)

changing their place of living due to socio-economic factors and livelihood styles.

While the theoretical framework presented in this study is generic, we have illustrated the

application of this methodology to the D4D Challenge in Senegal. Although mobility behaviors

due to agricultural cycles and their timing are qualitatively known, there is little quantitative

information on exact timing and scale of those population movements (e.g. how many people

go from the city to rural areas in specific harvest seasons). Results using the proposed frame-

work showed the potential to fill this data gap and provided relevant information related to the

population activity in the different livelihood zones in Senegal allowing to measure the changes

in mobility patterns related to the agricultural production means.

Generally, climate change and socioeconomic pressures are constantly changing the condi-

tions that affect livelihoods, and complete household surveys to collect the information are a

expensive and resource intensive endeavor. Therefore, always under strict and secure privacy

frameworks, the aggregated analysis of populations’ mobility, could be a valuable tool to help

policy makers and practitioners quantify and uncover new population movement phenomena;

so better policies and social protection programs can be designed.

Supporting information

S1 Note. Livelihoods and source income calendars.

(PDF)

S2 Note. Normalized Difference Vegetation Index.

(PDF)

S3 Note. Rainfall estimations from NASA-TRMM project.

(PDF)

S1 Fig. Senegalese segmentation into livelihood zones. Left: Map shows the segmentation of

Senegal into different livelihood zones. Right: Summary of each livelihood zone main charac-

teristics (further information in [21]).

(EPS)

S2 Fig. Senegalese segmentation into arrondissements. The color indicates the livelihood

assigned to each arrondissement, which is the one with larger overlapping area with the arron-

dissement surface. Antenna locations are also displayed with red dots.

(EPS)
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S3 Fig. Length of occupation by density of population. Histograms and associated boxplots

corresponding to the length of occupation of the population density in each livelihood 1-13

up-down, left-right (see S1 Fig). Blue histograms show the distribution of the raw CDRs in

monthly resolution. Red histograms show the distribution of the interpolated data in monthly

resolution.

(EPS)

S4 Fig. Completed vs original CDR-based population count at monthly resolution.

Dynamic population count for each livelihood (colors match the map in S1 Fig). They were

computed by counting the users located within the livelihood shapefile. Right columns

show the completed count after daily interpolation and temporal aggregation (Material and

methods) and left columns show the original CDR-based count.

(EPS)

S5 Fig. Mobility profiles and livelihood calendars. Alignment of the sylvo-pastoral livelihood

(yellow livelihood in S1 Fig) calendar and the derived mobility profiles for the livelihood.

(EPS)
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Mobility profiles from mobile phone data. Application in food security

PLOS ONE | https://doi.org/10.1371/journal.pone.0195714 April 26, 2018 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195714.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195714.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195714.s008
https://doi.org/10.1371/journal.pone.0195714


Formal analysis: Pedro J. Zufiria, David Pastor-Escuredo, Luis Úbeda-Medina, Miguel A.
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