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Abstract. Cassava Mosaic Disease (CMD) has been an increasing con-
cern to all countries in sub-Saharan Africa that depend on cassava for
both commercial and local consumption. Information about the country-
wide spread of this disease is difficult to obtain due to logistics and hu-
man resource issues in these countries. The objective of this study was
to assess the feasibility of automated computer vision based diagnosis of
CMD. Images of healthy and CMD-infected cassava leaves were taken at
Namulonge Crop Resources Research Institute, Uganda. We performed
classification on these images based on shape and colour features, using
a set of standard classification methods (näıve Bayes, two-layer MLP
networks, support vector machines, k-nearest neighbour and divergence-
based learning vector quantization). We find near-perfect classification
to be attainable for leaf images captured under ideal conditions, and
outline a method for performing this classification on natural, cluttered
images taken in situ.

1 Introduction

Cassava is the third largest source of carbohydrate for human consumption in
the world, and provides more food calories per unit of land than any other
staple crop. One of the main causes of yield loss for this crop is Cassava Mosaic
Disease (family:geminiviridae; genus: begomovirus). The disease is spread both
by whitefly and by the planting of infected stem cuttings, and destroys the
plant’s chlorophyll and hence its ability to feed itself, resulting in poor yields.
The symptoms of CMD are yellowish leaf colour affecting much of the leaf area,
distortion of the leaf shape with reduced size and stunting of the plant. Its
existence in Uganda dates back to 1928. However by 1999, a severe form of
CMD had expanded to cover more than 750,000km2 of East and Central Africa,
including virtually all the cassava growing regions of Uganda and neighbouring
countries [1].

Achievable cassava yields in Africa are estimated to decrease by 15% to 24%
due to CMD, which is equivalent to between 12 and 23 million tonnes per an-
num. In Uganda, estimated production losses due to CMD are USD 60 million
annually, and region-wide losses in East Africa have been estimated in excess
of USD 100 million annually [1]. The long term effects of a CMD pandemic are



a crisis in food security and widespread poverty since cassava is predominantly
grown by small holder farmers for food and as a source of income. The CMD
pandemic slows the market diversification of cassava use in the production of
livestock feed, textiles, pharmaceuticals, alcohol and other beverages [2].

Consequently, there is continuous need for timely and accurate information
for proper management of the CMD incidence and severity. This information
would be used in monitoring and forecasting CMD prevalence over time and
planning appropriate interventions to avert crises. However, such information is
difficult to obtain at present, due to challenges such as the availability of suitable
technical staff with the expertise to detect the CMD, the time and cost incurred
by transport to rural regions of the country, availability of salaries for the field
staff, and impassable roads during rainy seasons in some regions of the country,
and the time taken to coordinate paper reports [3].

We propose a computer vision system based on camera-phone input to pro-
vide a more efficient solution. Given some training and a basic camera-phone
(common in even the most rural areas of Uganda), farmers themselves can pro-
vide data in the form of images taken of their crops. In return they receive
micropayments to cover data transfer costs and appropriate agricultural advice,
both sent by SMS. Applying computer vision techniques to large sets of such
uploaded images, we can automatically classify the state of health of plants, and
then map the extent of the disease in a district or country. In this way, more
data can be collected, more rapidly and at lower cost. This paper describes ex-
periments to enable this latter part of the process, showing that CMD can be
diagnosed automatically with high accuracy based on images of leaves.

The use of computer vision for surveilling the health of crops has been looked
at in a number of related settings, including the identification of weeds [4], the
segmentation of diseased leaves [5] and disease-related discolouration in citrus
fruit [6].

The remainder of this paper is organized as follows. Our classification method-
ology is described in section 2, including data collection and feature extraction,
and we outline a method for processing natural, cluttered images in section 3.
Classification results are given in section 4 and we conclude in section 5.

2 Classification of leaf images

We now describe experiments carried out to classify a leaf image as exhibiting
healthy growth or CMD.

2.1 Data collection

Image samples of cassava leaves were captured from Namulonge Crops Resources
Research Institute, Uganda. We collected sample leaves from three different plan-
tations, placed each leaf on a light box and captured images with a standard
digital camera, at a resolution of 3072×2304. Leaf images were captured from
92 healthy plants and 101 plants infected with cassava mosaic disease. Examples
of these images are shown in Figure 1.



Fig. 1: Examples of healthy leaves (top) and those infected with cassava mosaic disease
(bottom).

2.2 Feature extraction

In this case we have images without clutter or background detail. With a light
background, it is therefore straightforward to remove the background from the
image by looking at intensity values. Ongoing work is addressing the problem of
locating a leaf from a natural image taken in situ – see section 3.

Three image processing techniques were employed to obtain representative
feature data from the leaf images of the health plants and from those with
cassava mosaic disease. One method was based on the colour distribution of the
leaves while the other two were based on the shape (image gradient information)
of the leaves. For the first dataset we obtained a normalised histogram of the
hues of pixels, taken by converting the image to HSV colour space. For the
second we used SURF (Speeded Up Robust Features) [7], a scale and rotation
invariant interest point detector and descriptor to obtain representative features.
For the third we used SIFT (Scale Invariant Feature Transformation) [8] to
obtain shape features corresponding to a 4×4 grid of histograms around each
keypoint location. All these three methods are differently motivated and part
of our investigation was to understand how classification performance changes
with the use of different features.

The hue distribution was calculated for each image using 50 histogram bins,
and was then normalised. The SURF and SIFT schemes identify points of in-
terest on each image of a leaf and output a range of descriptors per image. For
these two datasets we averaged out the descriptors for each image to obtain a
representative prototype for each image. Intuitively, such an averaged feature
descriptor gives an overall description of the shape characteristics in the image.



(a) Healthy leaf (b) SURF keypoints (c) Leaf only

(d) Leaf with CMD (e) SURF keypoints (f) Leaf only

Fig. 2: Examples of cassava leaf images, the locations of extracted SURF keypoints,
and the results of background filtering (top row: healthy leaf, bottom row: CMD)

Figure 2 shows the locations of SURF interest points in two training images.
Example hue histograms can be seen in Figure 3.

The feature sets used in the experiments included the three features on their
own, (i) hue histogram (HSV space), (ii) mean SURF feature and (iii) mean SIFT
feature. We also looked at four extended feature sets consisting of combinations of
the three; HSV-SURF, HSV-SIFT, SURF-SIFT, and HSV-SURF-SIFT datasets.

2.3 Classification

Classification was done using standard methods. We applied näıve Bayes (NB), a
two layer multi-layer perceptron neural network1 (NN), a 2-norm support vector
classifier2 (SVC), a k-nearest neighbour classifier3 (KNN) and divergence-based
learning vector quantization (DLVQ) [9].

We investigated DLVQ in order to exploit the fact that our features are
mainly in the form of normalised distributions. Learning Vector Quantization
(LVQ) provides a widely used family of algorithms for distance based classifica-
tion. LVQ systems have the advantage of being very flexible, easy to implement,
and applicable to multi-class problems in a straightforward fashion. The choice

1 Parameters: number of hidden neurons = 10, number of training epochs = 100,
regularization = 10−14.

2 Parameters: C = 0, degree = 1, γ = 0, regularization = 10−14.
3 We used k = 10.
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Fig. 3: Normalised hue histograms of the leaf images (calculated from the corresponding
images in Fig. 1), with healthy plants on the top row, and those with CMD on the
bottom row. Note that the CMD leaves tend to have a bimodal hue distribution, where
parts of the leaf affected by chlorosis add to the yellow range of the spectrum.

of an appropriate distance measure is crucial for the success of LVQ training and
classification. An extension of LVQ is DLVQ that uses divergences as a distance
measure. This is applicable for non-negative normalized data. Colour histograms
for example are well suited to such a technique. We used Cauchy-Schwarz diver-
gence [10] as the distance measure for DLVQ,

dCS(x1, x2) =
1
2

log[x2
1x

2
2]− log x>1 x2 (1)

which is intended as an information-theoretic measure of the variation between
two distributions.

3 Segmentation of leaves in natural images

We outline a method here for taking natural images of leaves in situ, where
there is background clutter, other types of plants and inconsistent lighting, and
finding the interest points corresponding to parts of cassava leaves. Note that
other work has been done previously on the segmention of leaves, see e.g. [5].

To do this we find a set of representative feature descriptors from the train-
ing data. In our experiments, we took all the SURF descriptors from the data
described in the previous section (30,733 descriptors from 193 images), and used
k-means clustering to find k=100 centroids. Taking natural images, such as the
one shown in Fig. 3(a), we were then able to calculate the SURF descriptors at
all interest points, as shown in Fig. 3(b). To find the descriptors most likely to
be part of a leaf, we then calculate the Euclidean distance from each descriptor
in the image to each of the k centroids. Descriptors with low distances to the
nearest centroids are more likely to be consistent with the training data, and
therefore more likely to be part of a cassava leaf. We can set a threshold on
this distance to filter the outlying descriptors. Fig. 3(c) shows the results of this
where a threshold has been set to retain the best matching 10% of the descrip-
tors; of 560 interest points in the original image, the best matching 56 are mostly
positioned on the edges of leaves, which are useful positions for classification.



(a) Original image (b) All SURF interest points (c) Filtered interest points

Fig. 4: Example of filtering out interest points related to clutter. The 10% of interest
points most closely related to the training data are shown, which mostly lie in valid
positions on the edges of the cassava leaves in the image.

Table 1: Classification accuracy area under the receiver operating characteristic
curve(AUC) performance of different classifiers for the three base datasets, HSV, SURF
and SIFT.

Classifier HSV SURF SIFT

NB 0.7455 ± 0.0791 0.9111 ± 0.0474 0.9455 ± 0.0474

NN 0.8545 ± 0.0822 0.9000 ± 0.0707 0.9727 ± 0.0474

SVC 0.8727 ± 0.0725 0.8889 ± 0.0707 0.9273 ± 0.0643

KNN 0.9455 ± 0.0474 0.9889 ± 0.0474 0.9909 ± 0.0433

DLVQ 0.8789 ± 0.0539 N/A 0.9786 ± 0.0985

4 Results

Classification results for the three main datasets (different feature sets of the
non-cluttered leaf images taken under ideal conditions) are shown in Table 1.
Results for standard algorithms were obtained as 100-fold cross validated scores
while for DLVQ results were obtained as an average over 100 randomized splits
of the data after 1000 epochs.

Table 2 shows the cross validated AUC performance scores for all the classi-
fiers for all the different augmented datasets.

Figure 5 shows the ROC curves for the Näıve Bayes classifier for the different
datasets; (a) HSV, (b) SURF, (c) SIFT and the augmented datasets, (d) HSV-
SURF, (e) HSV-SIFT, and (f) HSV-SURF-SIFT.

For the normalized HSV colour histogram data and the normalized SIFT
data, we observe the DLVQ classifier providing a comparable accuracy to KNN.
We propose that analysis of colour histograms by use of divergence measures
has the potential to give good classification performance because histograms are
more naturally represented as distributions. However high accuracy is also ob-
served for the vanilla implementation of the other standard classifiers especially
KNN.

For SURF and the augmented datasets, DLVQ is not applicable since SURF
introduces negative non-normalised data. However we observe a higher classifi-



Table 2: Classification performance (AUC) Scores for Augmented datasets for varied
classifiers; NB - Näıve Bayes, NN - Neural Networks, SVC - Support Vector Classifier
and KNN - K-Nearest Neighbour

Classifier HSV - SURF HSV - SIFT SURF - SIFT HSV - SURF - SIFT

NB 0.9222 ± 0.0474 0.9909 ± 0.0433 0.9333 ± 0.0474 0.9778 ± 0.0474

NN 0.9778 ± 0.0524 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9778 ± 0.0474

SVC 0.9889 ± 0.0474 0.9000 ± 0.0474 1.0000 ± 0.0000 1.0000 ± 0.0000

KNN 0.9944 ± 0.0474 0.9909 ± 0.0433 0.9944 ± 0.0474 0.9944 ± 0.0474

cation accuracy of 100% for the Neural Network and Support Vector classifiers
when applied to the combined datasets, which is higher than any of the individ-
ual dataset accuracies. We conclude that the extra information in the augmented
feature sets leads to better generalisation of the classifiers using them.

5 Conclusion

The paper presents preliminary results in the automated vision based diagnosis
of cassava mosaic disease in Uganda based on colour and shape. We found very
high classification performance to be possible, partly due to the use of high
quality images taken under consistent lighting conditions. However, the near-
perfect accuracy of the best performing combination of feature set and classifier
is encouraging for the development of an automated diagnostic system for CMD
using field images. For this we might favour algorithms such as näıve Bayes for
which inference is rapid, as they might be more suitable for implementation on a
mobile device. This work is therefore a step towards automated monitoring and
mapping of the disease on a country-wide level, useful for surveillance of food
security, prediction of famine, and the planning of agricultural intervention.

Future work will include taking typical cassava leaf images from camera
phones, with background clutter and mixed lighting conditions, and establishing
whether the accuracy of classification can be maintained in these conditions. We
have used training images taken under ideal conditions, and demonstrated the
feasibility of identifying a leaf amongst clutter in a natural image. However, more
work on leaf segmentation is needed before this can be practically deployed.

It is also necessary to add other potential classes and extend the scope of the
classifiers; for example, the brown streak virus is also becoming prevalent among
cassava plants in East Africa and would also need to be diagnosed where present.
Currently such conditions, which also cause yellowing and discolouration in the
leaves, would act as confounders to the classifiers we have considered here. Other
issues to look at include inferring the extent of the severity of the illness where
present, going beyond the binary classification we carry out in the current work.
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Fig. 5: ROC Curves for the HSV base dataset and the two augmentated datasets HSV-
SURF and HSV-SIFT for all the standard classifiers ; Näıve Bayes (NB), Neural Net-
works (NN), Support Vector Classifier (SVC) and K-Nearest Neighbor (KNN).
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