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Abstract

Modelling the density of an infectious disease in space and
time is a task generally carried out separately from the diag-
nosis of that disease in individuals. These two inference prob-
lems are complementary, however: diagnosis of disease can
be done more accurately if prior information from a spatial
risk model is employed, and in turn a disease density model
can benefit from the incorporation of rich symptomatic in-
formation rather than simple counts of presumed cases of in-
fection. We propose a unifying framework for both of these
tasks, and illustrate it with the case of malaria. To do this
we first introduce a state space model of malaria spread, and
secondly a computer vision based system for detecting plas-
modium in microscopical blood smear images, which can be
run on location-aware mobile devices. We demonstrate the
tractability of combining both elements and the improvement
in accuracy this brings about.

1 Introduction
An important aspect of sustainability is the management of
disease, whether it be of humans, plants or animals. One
common problem is to estimate the spatial density of a par-
ticular disease, given limited and noisy observations, and
another is to diagnose disease in individual cases at particu-
lar locations. These two tasks are usually done in isolation.
Informally, a doctor may be aware of outbreaks of human
disease in particular places or seasonal variations in disease
risk, and they may interpret test results accordingly. But
generally the diagnosis is not formally coupled with esti-
mates of disease risk.

The tasks of mapping disease density over space and time
and of diagnosing individual cases are complementary, how-
ever. A “risk map” can be used to give a prior in diagnosis
of an individual with a known location. In turn, the results
of individual diagnoses can be used to update the map in a
more effective way than simply making hard decisions about
infection statuses and using summary count data for the up-
date. The potential for combining maps and diagnosis in this
way has come about with the possibility of performing diag-
nosis with networked location aware devices that can carry
out the necessary calculations.
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A drawback to combining symptom information during
the inference of spatial density, particularly if these obser-
vations are continuous, is that probabilistic inference scales
exponentially with the number of samples per time frame.
In this paper we propose a unified probabilistic framework
for which inference is tractable, taking the case of malaria
as an example.

Our case study, malaria, is one of the most prevalent dis-
eases in the world, with about 3.3 billion people (i.e. half
of the world’s population) at risk, the poorest countries be-
ing the most affected. There is need to monitor and predict
malaria incidence across infected countries to allow for early
intervention initiatives. Control of the disease also depends
on accurate diagnosis of individuals, in order to treat those
who need it without the drug resistance caused by over-
diagnosis.

In section 2, we describe how the two tasks of disease den-
sity estimation and disease diagnosis can be unified. In sec-
tion 3, we present how this unification can be applied to the
case of malaria. In section 4, we present results that show a)
how a symptom model of individuals can be tractably used
for density estimation and prediction, with superior accuracy
at population level to traditional models, and b) conversely,
that inclusion of the density model can improve diagnosis of
diseases, taking an example of photomicroscopical diagno-
sis of malaria.

2 Dynamical models of infectious disease
We briefly review types of models used for estimating and
predicting spatiotemporal density of disease given count
data. Historically there has been a shift from “hand-crafted”
models with parameters set through the judgement of ex-
perts, towards the learning of parameters and model struc-
ture from data. ARMA, ARIMA, linear and log-linear re-
gression methods have been popular for modelling and pre-
dicting disease rates. More recently, probabilistic graphical
modelling has been applied to disease count data, particu-
larly for inference tasks such as outbreak prediction (Xia and
Garrick 2006; Cooper and Dash 2004).

One interesting development has been the use of novel
observation types in order to infer disease density, and in
particular to gain early warning of trends that might be in-
dicative of an outbreak. New sources of data that are being
considered include sales of over-the-counter drugs (Hogan
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Figure 1: (a) Generalized model of disease rate dynamics,
relating control inputs ut, latent variables xt (including un-
derlying risk) and observations yt (such as disease counts);
(b) symptom-disease model used in diagnosis of an indi-
vidual patient relating environmental risk factors xt, dis-
ease status of an individual d(i)t and symptom presented s(i)t ;
(c) model combining disease rate dynamics with individual
cases.

and Wagner 2006), absenteeism from work or school (Lenert
et al. 2006), chief complaint recorded in hospital visits,
emergency call center records, physiologic and space-based
sensors, internet search term frequency and ambulance dis-
patches.

In general, it is possible to express all of these approaches
in the graphical model form depicted in Figure 1(a). This
is the well-known state space form, in which control in-
puts u1:T (such as environmental or demographic factors)
affect latent variables x1:T (such as vector densities, pop-
ulation susceptibility or immunity) which in turn affect ob-
served quantities y1:T (normally infection counts, but poten-
tially including the more exotic observation types mentioned
above). Dynamics on the latent variables model the spread
of the disease in space and time.

2.1 Incorporation of symptoms and diagnosis
Next we consider the diagnosis of a disease state d in an
individual case given presentation of symptoms s. A gen-
erative model is a common device for using disease symp-
toms to diagnose disease cases. Furthermore, the underlying
risk factors x may be taken into account during diagnosis,
at least informally, by the agent performing that diagnosis.
For example, if a certain disease is known to be very com-
mon, cases with ambiguous symptoms are more likely to
be diagnosed as positive. A graphical model representing
the elements of this diagnosis process for individual cases
is shown in Figure 1(b). The diagnosis process can also be
represented by equation 1.

p (d|s1:n) ∝ p (s1, . . . , sn|d)
∫
p (d|x) p (x) dx

(1)

where s1:n is a vector of symptoms.
The two models in Figure 1(a) and Figure 1(b) can be

combined to get the model in Figure 1(c). This is possible

when we conceive of xt, the underlying risk factors, as be-
ing the same in both models and yt ⊥⊥ d

(i)
t , s

(i)
t |xt, which

means that the different types of observations are indepen-
dent from each other given the hidden disease state. Note
that in this model the input control variable, ut, has been
dropped and there is plate around the disease case, d(i)t , and
disease symptom, s(i)t , pair, meaning that we expect multi-
ple instances from the set of individuals St sampled at time
t. We define Ot ≡ {yt, s(i)t |i ∈ St}, the observed data at
time t. The joint probability distribution of the model in
Figure 1 (c), can be written as

p
(
x1:T , {d(i)1:T },O1:T

)
= p (x1)

T∏
t=2

p (xt|xt−1)×[
T∏

t=1

p (yt|xt)
∏
i∈St

p(s
(i)
t |d

(i)
t )p(d

(i)
t |xt)

]
. (2)

We could for example parameterize this as a variation of
the linear dynamical system (LDS), with the vector xt rep-
resenting the latent underlying disease risk at a set of lo-
cations. The locations might be arbitrarily small cells on a
regular grid, though it is common for them to be irregular
administrative regions due to the availability of data.

In order to combine the tasks of spatiotemporal modelling
and diagnosis, the timing of the different inference require-
ments must be taken into account. Diagnosis needs to be car-
ried out on the spot, while the updates to the density model
can happen at the end of the time frame. We can think about
the sequence of calculations needed in order to estimate xt
and {d(i)t } givenO1:t. Being a state space model, this can be
carried out with a pair of recursive steps known as prediction
and correction. Prediction for this model is the following:

p̂(xt|O1:t−1) =

∫
p(xt|xt−1)p̂(xt−1|O1:t−1) dxt−1 (3)

p̂(d
(i)
t |O1:t−1) ∝

∫
p(d

(i)
t |xt)p̂(xt|O1:t−1) dxt (4)

Correction is then done with the following:

p̂(d
(i)
t |O1:t) ∝ p(s

(i)
t |d

(i)
t )p̂(d

(i)
t |O1:t−1) (5)

p̂(xt|O1:t) ∝ p(Ot|xt)p̂(xt|O1:t−1) (6)

where

p(Ot|xt) = p(yt|xt)
∏
i∈St

∑
d
(i)
t

p(s
(i)
t |d

(i)
t )p(d

(i)
t |xt) . (7)

Step (3) can be done at the beginning of a new time frame,
and using this result steps (4) and (5) can be done at the
instant diagnosis is required for an individual case. Finally
at the end of the time frame, all the symptom information
can be incorporated in step (6).

3 Parameterising the model for malaria
Malaria is endemic in many regions of the world but has
highly variable spatial density even at a fine scale, depend-
ing on terrain, climate, population density and a number



of other factors. A number of studies have be done to es-
timate and predict malaria density. Representative exam-
ples of these studies include (Loha and Lindtjorn 2010) us-
ing ARIMA with disease counts and meteorological factors
(rainfall, temperature and relative humidity) to predict falci-
parum malaria incidence in Ethiopia and (Gomez-Elipe et al.
2007) using ARIMA in forecasting malaria incidence using
monthly disease cases, climatic factors (rainfall and temper-
ature) and normalized difference vegetation index (NDVI)
from satellite images.

Because of the high spatial variability of the disease, we
can expect benefits in diagnosis by inorporating this in-
formation when the location of the person being tested is
known. There are several methods of diagnosing malaria,
foremost among them visual inspection of blood cells.
Malaria is caused by the presence of the parasite genus plas-
modium, and the gold standard test is microscopical anal-
ysis of a stained blood sample in order to visually iden-
tify such parasites (Murray et al. 2008). Diagnosis is im-
portant as leaving the disease untreated frequently leads to
death, whereas taking the treatment based only on symptoms
leads to drug resistance and possibly the failure to treat dis-
eases with similar early symptoms (fever, joint pain) such
as meningitis. However, in the geographical areas in which
malaria is prevalent, there is frequently a shortage of experts.
Hence there has been increasing interest in carrying out this
diagnosis automatically with computer vision methods.

In vision terms this is an object detection problem, and
some previous work is reviewed in (Tek, Dempster, and Kale
2009). There has also been work in comparing these meth-
ods with other forms of diagnosis (Andrade et al. 2010).
(Ross et al. 2006) uses neural networks with morphologi-
cal features to identify red blood cells and possible parasites
present on a microscopic slide. The results obtained with
this technique were 85% recall and 81% precision using a set
of 350 images containing 950 objects. Color space and mor-
phological heuristics were employed to segment red blood
cells and parasites by using an optimal saturation threshold
(Makkapati 2009) using a set of 55 images. Multi-class par-
asite identification, attempting to classify the type and life
cycle stage of detected parasites has also been attempted
(Tek, Dempster, and Kale 2010).

In the remainder of this section, we discuss the estima-
tion of xt and d(i)t , beginning with the simple case where
only count data y1:t is available. In section 3.3 we describe
inference of d(i)t with image features.

3.1 Inference and learning with count data
In the following we take the latent risk to have linear-
Gaussian state transitions,

p (xt|xt−1) ∼ N (xt|Axt−1, Q) (8)

in which A is the transition matrix and Q is the transition
covariance. The disease counts can then be modelled by a
linear-Poisson observation likelihood on each dimension of
xt and yt,

p (yt,j |xt,j) ∼ Poisson (yt,j |cjg(xt,j)) (9)

where cj is a scaling factor and g(·) is a link function nor-
mally used to keep the Poisson rate positive, though in the
experiments described here the hidden states always take on
positive values and thus here g(·) = ·. We assume that the
observed disease counts at different locations are indepen-
dent given the hidden rates and thus the likelihood of the
data under this model is a product of the one-dimensional
Poisson distributions. Possible parameterizations of the dis-
ease and symptom variables are discussed in section 3.2.

We now describe the processes of inferences and learn-
ing in this method, giving details only where they vary from
the standard linear-Gaussian dynamical system. Unlike the
case of Gaussian transitions and Gaussian observations, ex-
act inference of xt in this model given observations y1:T
is intractable. The exact posterior is a product of Gaussian
state transitions and Poisson likelihood terms, which has no
closed-form representation. A simple and effective method
for inference, however, is the Sequential Importance Resam-
pling (SIR) algorithm, summarized for this model in Algo-
rithm 1.

Parameter estimation can be carried out with expectation
maximization (EM) steps as in the linear Gaussian LDS
(Ghahramani and Hinton 1996), using SIR in place of the
filtering E-step, to estimate A and Q. We make one al-
teration to the standard EM updates in this work, which is
to employ shrinkage (taking a weighted average of the M-
step result with a diagonal matrix). This has the effect of
reducing the most extreme off-diagonal coefficients, which
is known to reduce test error and improve on the positive-
definite quality of the resulting covariance matrix (Wolf and
Ledoit 2004). It is also possible after each M-step to zero
the off-diagonal elements ofA andQ corresponding to pairs
of locations that are known to have no direct effect on each
other. We performed several runs with different randomised
initial parameters during training and chose the parameters
with highest likelihood in order to mitigate the problem of
local minima.

The observation process differs from the LDS, so the esti-
mator for cj must be derived separately. Doing so gives the
M-step update

c̃j =
1

T

T∑
t=1

yt,j
g(〈xt,j |O1:T 〉)

. (10)

This estimation is not strictly required, however: in the fol-
lowing experiments we simply take cj = 1 for all j.

3.2 Inference with symptom data
We now consider the case of inference with symptomatic
information {s(i)t }. As an example, take the case that the
disease status d(i)t ∈ 0, 1 in each individual is distributed
conditional on the underlying risk as follows:

p
(
d
(i)
t = 1|xt

)
= 1− α

(
1− xt

N

)
(11)

where α is the false alarm rate in a sample (representing the
bias arising from the fact that people who present themselves
for testing are more likely to be ill than those in the general
population; this can be estimated by looking at historical



Algorithm 1: SIR with count and symptom data.
Input: Observations: O1:T 1
Model parameters: A,Q, p(x1)
Number of particles: P
Resampling threshold: Nthr

Output: p̂(xt|O1:t) for t = 1 : T .
Initialize particles x̂(p)1 ∝ p(x1) for p = 1 : P
for t = 1 : T do

Sample P particles from the transition prior
T (x̂

(p)
t ← x̂

(p)
t−1) = N

(
x̂
(p)
t |Ax̂

(p)
t−1, Q

)
Compute the importance weights
w

(p)
t ∝ p(Ot|x̂(p)t ) (See eqn. 7)

Normalize w(p)
t =

w
(p)
t∑

p′ w
(p′)
t

Resample if 1∑
p

(
w

(p)
t

)2 < Nthr

return p̂(xt|O1:t) =
∑

p w
(p)
t x̂

(p)
t

end

numbers of cases for testing and true positives), andN is the
population size in the corresponding area. Conditional on
an individual’s disease state, the sample s(i)t could be drawn
from a Gaussian distribution, for example.

With continuous, possibly multi-dimensional symptom
observations, the likelihood term p({s(i)t }|xt) is a mixture
of many terms that is difficult to simplify analytically (the
product in Eq. (7)). Therefore the normalisation coefficient
in Eq. (6) might be very difficult to estimate in general. Par-
ticle filtering would have the same complexity, as we would
need to propose particles which explore the full space of dis-
ease states in n individuals, making inference in this model
intractable for more than a few tens of symptom observa-
tions per time frame. However, the complexity can be radi-
cally reduced by quantizing the sample.

If we split the range of s(i)t into bins, then each symp-
tom observation can be assigned to one of those bins. Given
xt, the likelihood of observing a symptom measurement as-
signed to a particular bin can be calculated by marginaliz-
ing out d(i)t . The likelihood of a set of observed symptoms
can be represented as a set of frequency counts for each bin,
and evaluated as a multinomial distribution. Evaluating the
likelihood in this way is constant in the number of observed
cases.

3.3 Vision-based diagnosis of malaria
When image data is to be used as a source of symptom
information, there is a wide choice of features encodings
which might be used to represent the raw pixel data more
effectively. We could take standard color, shape and gradi-
ent features directly, though we propose here training dis-
criminative classifiers on such features and using the out-
puts of these classifiers as the ‘symptoms’. Consider a case
where using n discriminative classifiers we extract features
for each patch i to form the symptom vector si,1, . . . , si,n.

From a training set, we can look at the class-conditional
distribution of features p(di|si,1), . . . , p(di|si,n), where we
take di ∈ {0, 1} to denote the absence or presence of a para-
site object in the ith patch. Making an assumption of condi-
tional independence between these features given the patch
class, classification can be carried out using
p(di|si,1, . . . , si,n) ∝ p(si,1|di) . . . p(si,n|di)p(di) (12)

that is, a Naive Bayes classifier. To relate this to infer-
ence in the coupled dynamical model of section 2, we can
map p(si,1|di) . . . p(si,n|di) to p(s

(i)
t |d

(i)
t ), and p(di) to

p̂(d
(i)
t |O1:t−1) in Eq. (5).

4 Results
This section presents experimental results for density esti-
mation with count data, density estimation with symptom
data, and diagnosis with image data.

4.1 Density estimation with count data
We demonstrate the accuracy of inference in this model with
an example of data from six zones of Kampala, Uganda.
This data consisted of weekly reported malaria cases of
the period from 15th January 2007 to 1st February 2010.
Data was obtained from the Health Management Informa-
tion (HMIS) Department Kampala City Council. Two years
of data was used to learn the parameters of the model. One
year’s data was used to test the model.

Table 1 shows the mean absolute error of step-ahead
predictions of disease counts using SIR inference, for
single-dimensional state-space models (temporal) and six-
dimensional state-space models (spatiotemporal). These
were compared with log-linear regression, a method com-
monly used for this task, and a simple baseline, where the
count at time t − 1 was taken to be the predicted count for
time t. The order of the log-linear model was set to 3 after
investigating the partial autocorrelation of the training data.

MAE SD

State space (temporal) 221.3025 109.9517
State space (spatio-temp, 0.1) 275.5585 110.6003
State space (spatio-temp, 0.3) 241.1393 107.7543
State space (spatio-temp, 0.5) 231.6659 108.3874
State space (spatio-temp, 0.7) 239.7405 105.7676

Log linear (temporal) 311.2650 266.7252
Log linear (spatio-temp) 302.4633 275.5987

Baseline (ŷt = yt−1) 225.7778 97.0029

Table 1: Mean and standard deviations of absolute error
rates for step-ahead predictions of malaria incidence in six
connected regions. Particle filter inference in the state space
model are compared to log-linear regression and predicting
the next observation to be the same as the previous one.
The number associated with the spatiotemporal models are
shrinkage factors used in estimating A and Q.

The state-space temporal model has by a small margin the
lowest error rate, suggesting that the assumption of a hid-
den disease rate evolving through time is good for disease



density modelling. Surprisingly, the second best predictor,
is the simple baseline of predicting a repeat of the previ-
ous observation. We should note that the dataset for this
experiment is fairly small and therefore models with many
parameters are prone to over-fitting. The spatio-temporal
state-space models perform comparably to the temporal one
and the baseline, while the log-linear models perform con-
siderably worse.

The particle filtering technique shown here is simple to
implement but has the problem that many particles are re-
quired when the dimension of the latent variables are high.
There are several extensions of the basic method intended to
overcome this problem. For example, it is possible to ap-
proximate the distribution p(xt|xt−1)p(Ot|xt) directly with
the particle set without using a proposal distribution or im-
portance sampling, a technique known as marginal particle
filtering (Klaas, de Freitas, and Doucet 2005). Auxilliary
particle filtering is a simpler approach which removes parti-
cles inconsistent with the next observation, often leading to
a smaller particle set being necessary.

4.2 Density estimation with symptom data
To demonstrate this type of inference we first simulated a
sequence of hidden states x1:T . Then we used the symp-
tom disease model to generate samples of individual binary
disease states {d(i)1:T } of patients, conditioned on the hidden
rate xt, using Eq. (11) with N=5000 and α = 2

3 . The symp-
tom data (temperature) for each individual case was sam-
pled from N (37, 0.5) if d(i)t = 0, and from N (38.5, 1) if
d
(i)
t = 1. We set the number of samples at each time step to
|St| = 100. Equivalent count information y1:T , for compar-
ison, was derived from the sampled symptom information.

To be able to compare the use of symptoms versus disease
counts, we carried out estimation of p̂(xt|{s(i)1 }, . . . , {s

(i)
t })

and p̂(xt|y1:t) and studied the mean absolute error,
1
T

∑T
t=1 xt − x̂t. The predictions using symptom observa-

tions have a mean absolute error of 81.69 ± 2.77, which
as expected is significantly lower than the error when us-
ing count observations of 88.06 ± 4.73. The intuition for
this is that making a hard decision about disease status is
error-prone; using the symptom information allows us to op-
timally take account of uncertainty in the disease status. If
diagnosis from symptoms alone could be made with perfect
accuracy, there would be no advantage in modelling symp-
toms. The more uncertain the diagnosis, however, the more
benefit in using this information.

Figure 2 illustrates the operation of particle filtered infer-
ence using symptom data. The top panel shows samples of
symptom data for 20 time steps, while the lower panel shows
both the true underlying infection rate in the population and
the positions of particles estimating it. Note the frequent
resampling of particles as they move far away from xt.

4.3 Diagnosis with image data
To train and evaluate malaria diagnosis, thick blood film im-
ages were collected from patients, manually diagnosed with
and without plasmodium falciparum from Mulago Hospi-
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Figure 2: Particle filtering with symptom data. The up-
per panel shows simulated symptoms during an outbreak;
at each time frame the proportion of high measurements in-
creases. The lower panel shows the true underlying infection
rate xt, and the trajectories of point estimates x̂(p)t . The size
of the circles indicates the importance weight w(p)

t of the
corresponding particle.

tal, Kampala, Uganda. Images were collected with a Brunel
SP100 microscope and Motic MC1000 microscope camera
(Figure 3, left) from blood film samples of 133 patients. Af-
ter discarding images which were out of focus or otherwise
poor quality, the data set contained 2703 images, 800 of
these reserved for testing. These images were annotated by
a team of laboratory technicians, in which the Pascal VOC
(Everingham et al. 2010) software was used to draw bound-
ing boxes around malaria parasites which were visible in the
blood images (Figure 3, right). The images fell broadly into
three categories: hyper-parasitaemic, in which several dozen
parasites might be visible in a single image; parasitaemic, in
which up to ten parasites might be visible in one image; and
negative, where no objects were recorded. A total of 49,900
parasite objects were recorded in the image set1. Figure 4
shows examples of these objects compared to clutter in the
images which is easily confounded with parasites, illustrat-
ing the difficulty of the detection task.

Detection was implemented by training three discrimina-
tive classifiers. First, a boosted cascade of Haar-like fea-
tures (Viola and Jones 2001) was used. Two boosted sets
of decision trees were trained on sliding-window patches,
one with dense SURF descriptors (Bay et al. 2008) of each
patch, and another with central moments of a Canny-filtered

1We intend to make the complete dataset of images and anno-
tations publically available in the near future.



Figure 3: Image capture using a dedicated microscope camera (left). Object detection code running on a smartphone mounted
over the microscope eyepiece (centre). Example blood smear image with ground truth, showing bounding boxes around para-
sites provided by an expert (right).

Figure 4: Image patches close to the decision boundary. The
upper group are parasites, while the lower group are clut-
ter (such as platelets, spots of dust on one of the lenses or
staining solution artifact).

contour image of each patch. The output of these clas-
sifiers for each patch forms a three dimensional symptom
vector si,1, . . . , si,3. In the case of the cascade classifier
si,1 ∈ {0, 1}, whereas for the other features si,2, si,3 ∈ R
taking the weighted sum of votes from each of the set of
boosted decision trees. The class-conditional distributions
of these features p(di|si,1), . . . , p(di|si,3) are computed and
used with p(di) in Eq. (12) to perform diagnosis.

System deployment We investigated two modes of de-
ployment. First, we looked at using a dedicated microscope
camera for capturing a live video feed, with object detection
code runnning on a laptop. In order to do this we imple-
mented a Linux USB driver for the proprietary Motic cam-
era hardware. Because the imaging apparatus was identical

to that used in testing, the accuracy results below general-
ized well to live testing, and several video frames per sec-
ond could be analysed. Second, we tried deploying detec-
tion code on a Huawei Ideos phone running Android 2.2 and
costing around $100. The camera of the phone was applied
directly to the microscope eyepiece using an eyepiece clamp
and ring magnet to hold the camera in place (Figure 3, cen-
tre). Detection was implemented for this platform using the
OpenCV library. Parasites could be distinguished in images
obtained this way, though lower image quality negatively
impacted detection accuracy – we are still in the process of
quantifying the performance of the smartphone-based sys-
tem. One frame could be processed in around 10 seconds
on the phone. Both deployments are intended to incorpo-
rate the spatiotemporal framework (downloading location-
specific priors and uploading symptoms).

Table 2 shows results of the detection accuracy with dif-
ferent detection methods. Using a generative (Naive Bayes)
model of the discriminative features at a threshold of 0.5
gives inferior accuracy to the cascade detector in terms of
recall and F-score. However it has better precision and al-
lows the incorporation of knowledge of the prior.

We examine the effect of such information by carrying out
a separate test with the generative classifier. The set of 800
test images was split into 10 partitions with different concen-
trations of parasite objects. The classifier was supplied with
the correct prior (the ratio of actual positive patches in that
partition). With this information, we see that the threshold
on the posterior can be increased giving much higher preci-
sion with usable recall. Precision is more important in this
application as we can compensate for low recall at test time
by scanning more images from each blood sample.

5 Discussion
We have presented a probabilistic model combining dy-
namic estimation of disease infection rates with diagnosis
of individuals at given locations. Combining these tasks can
lead to higher accuracy for both. Continuous symptom in-



Precision Recall F-score

Cascade 0.678 0.866 0.761
Boost-SURF 0.346 0.802 0.484

Boost-moments 0.236 0.555 0.331
Generative t=0.5 0.698 0.734 0.716

t=0.6 0.755 0.296 0.426
t=0.7 0.781 0.050 0.093

Generative* t=0.5 0.726 0.733 0.730
t=0.6 0.754 0.701 0.726
t=0.7 0.795 0.629 0.702
t=0.8 0.841 0.496 0.624
t=0.9 0.907 0.203 0.332

Table 2: Parasite detection performance for discriminative
classifiers and generative classifier. * denotes that the test
set was partitioned and the correct prior probability of each
patch in a partition being a positive match was supplied
to the classifier. Precision and recall are calculated from
the posteriors of the generative classifier by thresholding at
probability t.

formation can be incorporated in constant time, though one
area of future work is in finding tractable inference methods
for cases in which the latent state has hundreds or thousands
of dimensions.
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