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Abstract—Automating crop disease diagnosis is an important
task, particularly for regions with few experts. Most current
methods detect disease by analyzing leaf images, particularly
for diseases that manifest on the aerial part of the plant. To
train a good classifier one requires a huge image dataset and
the appropriate methods to extract relevant features from the
images that represent the disease unambiguously. Image data
also tends to be prone to effects of occlusion that make consistent
analysis of the data hard. In this paper we take a look at
the use of spectral data collected from leaves of a plant. We
analyse spectral data from visibly diseased parts of a leaf as
well as parts that are visibly healthy. We employ prototype
based classification methods and standard classification models
in a three-class classification problem configuration. Results
presented show significant improvement in performance when
spectral data is used and the possibility of early detection of
disease before the crops become visibly symptomatic, which for
practical reasons is very important.

Keywords: Spectral data, disease diagnosis, crop images,
prototype-based classification, neural networks.

1. Introduction

The state of the art method of identifying diseases in
plants in the field is by use of visual symptoms which an
agricultural expert is able to relate to particular diseases
in the plant. For places where experts are not available or
where farmer knowledge is insufficient, other methods for
carrying out field-based diagnoses are a critical need. Com-
putational work in this area has been towards automating
this process through building machine learning models that
can take an image of a leaf and predict whether the plant is
infected with a particular disease or not.

In this work, we focus on an important crop for Sub-
Saharan Africa and other regions, Cassava (Manihot escu-
lenta). Cassava is the second most important food crop in

Sub-Saharan Africa especially amongst smallholder farmers
because it can easily be grown in poor soils and requires
few inputs. It is also a very important food security crop for
the same reasons. Although cassava is known to survive
under harsh conditions, its productivity has greatly been
affected by pests and viral diseases in recent years causing
losses in the millions of dollars [1]. Our work in this paper
particulary looks at two critical viral diseases in Cassava;
Cassava mosaic disease (CMD) and Cassava brown streak
disease (CBSD).

This research builds on previous work in the area [2], [3],
[4] and considers work by other groups that has focused on
automating the detection of cassava diseases e.g. [5]. Most
of the earlier work considers the use of leaf images as the
key data input into the model and in order to be effective,
diseases symptoms need to be visible or in advanced stages.
From a practical point of view, however, once symptoms
have manifested, little can be done to save the situation since
the disease has spread to almost all the neighboring plants.

Spectroscopy is a field aimed at studying how different
materials interact with light, particularly which wavelengths
will be absorbed or reflected by a material once the material
is exposed to rays of light. We leaverage spectroscopy in
this study to attempt to understand how plants manifesting
different diseases interact with light. Our hypothesis is that
disease causes several metabolic changes in the biology of
the leaf that can be teased out through spectroscopy. To
this end we collect spectral data from diseased and healthy
cassava leaves.

A key outlook from this work is the possibility of detect-
ing disease earlier or before a diseased plant is symptomatic.
This has implications in the timeliness and effectiveness of
interventions that can be applied to the crops. We test this
hypothesis by looking at leaves on visibly diseased plants
that still look healthy, so we know they are infected but are
not yet symptomatic, as well as looking at visibly diseased
parts of the plant as depicted in Figure 2. Our results indicate
the possibility of this technique actually working for early
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detection of disease using spectrometry.
In the following sections we discuss some work that

has already been done in this area, looking at image based
techniques for diagnosis as well as the use of spectrometry
for inferring disease in other crops. We also discuss our data
collection, experiments and results from applying several
algorithms to this data. We end the paper with a brief
discussion of the results and conclusion.

2. Related work

Several attempts have been made to diagnose disease
using leaf image data. Image data presents a natural means
in this context because the disease manifests visibly on
the leaf. Spectrometry goes further by potentially capturing
underlying mechanisms in the leaf that are associated with
the disease. We review some of the work in these two broad
methodologies.

2.1. Disease detection using image data

One of the first pieces of work in this regard was
published by Aduwo et. al. [2], who present the use of
computer vision to diagnose cassava diseases. They used
leaf images of cassava plants taken in a lab setting with
uniform lighting and background. A two-class algorithm
was developed that detects whether an image of a leaf is
from a diseased or health plant. Three sets of features were
extracted from leaf images including features related to the
hue and intensity of the image (HSV), and features that
capture interest keypoints on the image, including Scale In-
variant Feature Tranformation (SIFT) features and Speeded-
Up Robust Features (SURF).

The classification methods used were improved upon in
subsequent work [3], [6], [7] where improved implemen-
tations of prototype-based classification schemes were em-
ployed. Several other work extended the two-class problem
to a multi-class problem with multiple diseases and different
severity levels of disease [4]. Several other features were
used in these extensions of the initial work by Aduwo et.
al.

More recent image based approaches for cassava disease
detection are based on deep learning, e.g. Ramcharan et.
al. [5], where several images of the different diseases in
cassava were used to build a deep neural network that was
able to detect disease with relatively good performance.
Further attempts at using deep neural networks have also
been shown to work in other studies [8]. A key advantage
of the use of deep neural networks is that the features
corresponding to the disease need not be hand crafted, the
model is able to learn the relevant features given sufficient
training data. The drawback with these methods is that
significant amounts of training data is required to build these
networks.

Several other image based approaches to crop disease
detection have been suggested in the literature, see e.g. [9],
[10], [11].

Obviously, any image based technique, whether it is
combined with machine learning or not, relies on the pres-
ence of visual symptoms. However, once symptoms have
manifested, not much can be done to control the situation.
For some of the diseases in cassava for example, the root
of the plant is already affected and cannot be used for food
consumption. Frequently the disease has also spread across
neighboring plants. The need for early detection of disease
before the plant is symptomatic is profound. One direction
we investigate in this paper is the use of spectrometry.
Obtaining a spectral signature of a leaf, we surmise, will
be more informative of the state of disease of the plant
than image data particularly if we want to determine disease
before the plant is visibly symptomatic.

2.2. Spectrometry for disease diagnosis

Imaging spectroscopy has received broad interest in var-
ious sectors of agricultural research, including soil science
[12], [13] and crop disease monitoring. A good review of
some of the imaging spectroscopy technologies used can be
found here [14].

The range of work done in this regard is diverse. Feng
et. al. [15] present a multispectral imaging system for the
diagnosis of plant diseases and insect pests. They apply the
same suite of methods in diagnosing cucumber diseases
as well [16]. Spectroscopy has also been used to detect
mechanical and disease stresses in citrus plants [17], [18].

Further examples include Bo et. al. [19] who present a
field imaging spectroscopy system that was used to predict
the chlorophyll content from soybean leaves using linear re-
gression, partial least squares regression and support vector
machine regression. In [20], methods for early detection of
rice blast using near-infrared hyper-spectral images are also
presented.

Overall, spectroscopy as a tool for measuring the state
of a material is becoming prevalent and in this work we
show first attempts at leveraging it to detect viral diseases
in cassava. Spectral data being generally high dimensional,
we also present feature engineering methods we employed
to take care of the dimensionality.

3. Experiments

Here we describe the data collection process, pre-
processing and analysis of the acquired data.

3.1. Data collection

To carry out the experiments, two types of data were
collected, each dataset broken up into different categories
to represent the disease classes. Figure 1 illustrates the data
collection pipeline for automating cassava disease diagnosis.
The first type of data consisted of 760 images of cassava
leaves in the field, taken using a smartphone camera with
a resolution of 72dpi. The leaf images were evenly split in
three categories; (i) those representing Cassava brown streak
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disease (CBSD), (ii) those representing Cassava mosaic
virus disease (CMD) and (iii) those representing healthy
control plants (HC). Experiments on this data focused on
image-based techniques of disease diagnosis.

Figure 1. Cassava disease automated diagnostic pipeline as de-
scribed in Section 3.1

The second type of data acquired was spectrometry data
corresponding to the leaves from which the image data was
collected. This data was acquired with the use of a CI-
710 miniature leaf spectrometer [21]. The device is USB
powered and portable so it can be used to collect field
measurements. Specialised software that comes with the
device allows us to collect the spectra from the leaves. From
experiments carried out in the field, we realised that several
parameters influence the intensity and shape of the spectra
obtained, illumination being of particular importance. For
this reason, we collected data directly in the fields under
natural light. We also focused on reflectance mode since
previous measures and experiments did not show significant
difference between reflectance and transmission spectra ob-
tained for these leaves.

We collected data for plants aged 6 to 9 months. At
this age, diseased plants manifest symptoms. We collected
data across five cassava varieties. For each variety, three
plants were considered and of each plant, three leaves were
sampled. The cassava leaf has multiple lobes, thus for each
leaf, two readings were taken on each leaf lobe: one on
the good part (not visibly showing symptoms) and the other
on the bad part (part showing visible disease symptoms).
Because the spectrometer takes readings on a small area of
the plant about 7.6 mm in diameter, readings for every leaf
lobe were recorded in order to achieve a representative and
reliable sampling representing a single leaf. Note that this
was taken care of during validation of the models, so that

Figure 2. Depiction of good and bad part of leaf

we never trained and tested on data from the same plant. In
total, 760 data points were collected for evenly distributed
disease classes. Figure 2 illustrates the good and bad leaf
parts of interest.

3.2. Feature extraction

3.2.1. Image data feature extraction. Following method-
ologies from previous work [3] on cassava disease diagnosis
using leaf images, we extracted color (HSV) and SIFT
features because they have been shown to accurately capture
the manifestation of the different diseases in the leaves of
cassava plants. For color, a Hue, Saturation, Value (HSV)
color transformation of the image is computed. Of the three
components, Hue has been found to be more significant and
histograms of 60 bins of this component were considered.
SIFT feature descriptors of 128 dimensions were also ex-
tracted. Both color and SIFT features were computed using
the standard OpenCV toolbox [22].

3.2.2. Spectral data pre-processing. A single spectrogram
representing one reading on a leaf presented as a 2,554
dimensional vector with noisy components at each end of the
spectrogram. The first pre-processing step is to truncate the
spectrogram to within the limits of operation as set for the
equipment [21] which is an interval of wavelengths from
400nms to 900nms. For all spectra hence, the region of
the spectrum between the wavelengths 400 nms − 900nms
was considered for the next processing steps. A further pre-
processing step done was smoothening the spectra. For this,
we compared two filtering techniques: median filtering [23]
and average filtering [24]. For both, we used a window size
of 15 nm. Preliminary experiments indicated that the use
of average filtering yielded better classification results. As
a consequence, average filtering was applied to the spectral
data.

In the experiments, we compare performance when using
the high dimensional spectral data and when using a reduced
dimension dataset. Dimensionality reduction is important
for practical deployment purposes. Here, we apply Principal
Component Analysis (PCA). PCA is a standard technique
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for correlation analysis and dimensionality reduction which
has been widely used [25]. PCA can be used to project
high-dimensional data linearly to a low-dimensional space
in which most of the statistical variation is preserved [26],
[27].

3.3. Training a diagnosis classifier

Several options abound for which type of model to train
for this kind of data. Previous work has used convolutional
neural networks (CNNs) and prototype based methods with
great success. We are restricted in the use of CNNs here
because of the limited size of our dataset. Our choice was
thus prototype based Learning Vector Quantization (LVQ).
We compare this method with some standard machine learn-
ing algorithms from the SciKit-learn toolbox [28]. For our
experiments we use the following: (i) K-Nearest Neighbour
(KNN) because it is very similar in flavor to prototype
based methods, (ii) Linear Support Vector Machine (SVM)
because it has shown good performance previously [3],
and (iii) Decision trees, because these have also previously
shown good performance particularly the Extremely Ran-
domized Trees (Extra trees) algorithm [4].

3.3.1. Prototype-based classification methods. As a set
of methods that have given good performance in previous
classification tasks related to cassava images, we give a
small review of the motivation behind prototype-based clas-
sification methods. Suffice to say that because these methods
essentially train a prototype which is in the space of the
data, they are very intuitive and for deployment purposes
very simple to integrate into a diagnosis pipeline like that
on a smartphone.

The simplest prototype-based classification algorithm,
Learning Vector Quantization (LVQ) was introduced by
Kohonen [29] in 1986 and since then various modifica-
tions have been suggested in the literature all aiming at
better convergence or favorable generalization [30], [31].
In LVQ, a particular classification task is defined by a
set of M prototype vectors wj ∈ RN which carry labels
c(wj) ∈ {1, 2, ...C} such that W = {wj , c(wj)}Mj=1. The
system can be set up with one or more prototype vectors
per class. For this experiment, we considered one prototype
vector for each class.

A nearest prototype classifier (NPC) assigns a given
feature vector x ∈ RN to the closest prototype with respect
to some meaningful distance measure. Most frequently, stan-
dard Euclidean distance d(w, x) is employed. The corre-
sponding NPC assigns x to the class c(wL) of the closest
prototype with dΛ(x,wL) ≤ dΛ(x,wj) for all j.

An important conceptual extension of the basic LVQ
concept is so-called relevance learning: There, an adaptive
distance dΛ is used where Λ denotes a set of adjustable
parameters which are adapted, together with the prototypes,
in a data-driven training process.

The GMLVQ algorithm proposed in [31] employs a
full matrix Λ ∈ RN×N of relevances that represents the
importance of single features and their combinations in the

classification task. Here, the distance measure dΛ(x,w) is
defined as:

dΛ(x,w) = (x− w)>Λ(x− w), (1)

where the parameterization Λ = Ω>Ω guarantees that
dΛ(x,w) ≥ 0 for arbitrary matrices Ω ∈ RN×N . In order to
avoid numerical degeneracies, a normalization constraint of
the form ∑N

i=1 Λii =
∑N
i,j=1 Ω2

ij = 1

is imposed. In GMLVQ, the training process is guided by
the optimization of a cost function of the form suggested
by [30]:

E(W ) =

p∑
µ=1

Φ

(
dΛ
J (xi)− dΛ

K(xi)

dΛ
J (xi) + dΛ

K(xi)

)
(2)

where dΛ
J denotes the distance to the closest correct proto-

type with c(wJ) = yµ and dΛ
K is the distance to the closest

incorrect prototype
(
c(wJ) 6= yµ

)
. The modulation function

Φ is frequently chosen to be a sigmoidal function. Here
we resort to the identity Φ(x) = x in order to avoid the
introduction and tuning of additional parameters.

This model based on learning a relevance matrix [31],
[32] also provides us with a way of reducing the dimen-
sionality of the spectral data in this case. Part of our future
work will be to extend this method to identify relevant wave-
lengths that are most important for classifying the different
diseases. One can then extend this to the construction of a
simpler, cheaper spectrometry tool that offers analysis in a
limited wavelength band.

3.3.2. Validation. For all the models we train, we carry
out a 10-fold cross validation and average the performance
over the folds. We employ parameter K=15 for the KNN
algorithm, C = 1 for the linear SVC and 200 estimators for
the Extra trees algorithm. For the GMLVQ algorithm we
employ standard parameters used in the GMLVQ tool box
which is available online [33].

A particular precaution had to be made for the spectral
data. Since the data collection process involved picking
more than one sample from a particular plant, it was im-
portant to choose a validation strategy that matches this
condition in order to avoid training and testing on data
from the same plant. We kept track of the class label (HC,
CBSD and CMD) as well as the unique plant labels (also
called groups). During training, the cross validation splits
were based on plant groups and the validation scheme was
Shuffle-Group(s)-Out crossvalidation as implemented in the
SciKit-learn toolbox [34].

4. Results

4.1. Good vs. bad part of leaves in spectral data

A key aspect of this work was to figure out whether
the location of where spectra was taken from a leaf matters,
particularly if there is a significant difference between taking
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spectral data from visibly infected parts of the leaf (bad part)
or from parts of the leaf that are not visibly infected (good
part). We run the battery of algorithms on the two datasets
and present the results in Table 1. The results (accuracy
scores) point towards a marginal difference between the two
parts for some of the algorithms, SVC, KNN and Extra trees,
but show significant difference for GMLVQ. All results
presented here are for a multi-class problem and the two
datasets are composed of three classes (Healthy, CBSD and
CMD disease).

TABLE 1. SPECTRAL DATA DEPENDENCE ON LEAF QUALITY (HEALTHY
VS. CBSD, CMD)

Classifier Leaf part
Bad Good

KNN 0.919 0.923
Linear SVC 0.941 0.957
Extra trees 0.917 0.927
GMLVQ 0.937 0.973

TABLE 2. CONFUSION MATRIX FOR Bad PART OF LEAF WITH GMLVQ

Healthy CBSD CMD

Healthy 98.70 1.30 0
CBSD 0 100 0
CMD 0 17.04 82.96

Given this initial analysis, for the rest of the experiments
we use the spectral data taken from the good part of the leaf.

4.2. Image-based features vs spectral data

Our hypothesis is that spectral data can offer better
representation of the inherent disease in the plant than image
data. Our first experiment was to test this hypothesis. Table 4
gives a depiction of the results. As is evident we see superior
performance of each of the algorithms on spectral data than
on the color and SIFT features extracted from the images.
The metric used is the accuracy score. From the results,
it appears spectral data is a more useful representation
of the cassava plants than image data. A drawback one
immediately sees is that the dimensionality of the spectral
data (2554 features) presents a challenge.

4.3. PCA spectral features

Using the technique for dimensionality reduction de-
scribed earlier, PCA, we are able to reduce the spectral data
dimension from 2554 to 30 principal components. In Figure

TABLE 3. CONFUSION MATRIX FOR Good PART OF LEAF WITH GMLVQ

Healthy CBSD CMD

Healthy 100 0 0
CBSD 0 100 0
CMD 0 8.2 91.8

TABLE 4. PERFORMANCE WITH DIFFERENT DATA FEATURES
(HEALTHY VS. CBSD, CMD)

Classifier Color SIFT Spectral
Original PCA

KNN 0.705 0.849 0.923 0.932
Linear SVC 0.738 0.895 0.957 0.959
Extra trees 0.803 0.889 0.927 0.944
GMLVQ 0.742 0.901 0.973 1.000
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Figure 3. Performance with increasing number of principal components

3, we illustrate the performance for n-principal components
thus justifying the choice for using 30 principal components.
We use these as features in the training of the battery of
classification algorithms. Table 4 shows the results from
these experiments. Generally we see a marginal improve-
ment in all algorithms when this reduced feature set is used.
A clear advantage from this is that there is a reduction
in noise in the data when we do a PCA transformation,
however the corresponding disadvantage is that we are not
not able to identify the relevant wavelengths critical for
classification of the different diseases. Also for a live system
this introduces a computational penalty in transforming the
data, however which could be offset by the reduced time to
do the prediction.

5. Discussion

This paper has introduced a method based on spectrom-
etry which constitutes a novel approach in the context of
field based diagnosis of cassava disease. To the best of
our knowledge, we are not aware of any other work com-
bining spectrometry and classification for cassava diseases
as presented here. Our experimental results are promising.
The first result in Table 1 comparing the bad and good
parts of a leaf was a bit surprising. In these results, we
noticed a marginal difference in the performance albeit for
one algorithm where there was a significant increase in
performance for the experiment using the spectral data from
the good part. Analysis of the confusion matrix, Table 2
gives a glimpse at why this may be so; for experiments
with the bad part we observe the classifier confusing CMD
and CBSD diseases which could result from the metabolic
mechanisms that represent disease being obscured by the
visibly infected part of the plant.

Table 4 provides evidence of the superiority of spectral
data compared to image data for classification of viral
disease in cassava. One explanation is that spectral data
captures the inherent metabolic changes related to the dis-
ease infecting the plant, and probably different diseases
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manifest differently in different plants. As mentioned image
data is also prone to occlusion making it less accurate in
prediction. The GMLVQ algorithm however provides supe-
rior performance compared to other algoirthms as shown in
Table 3 probably because the nature of the data allows for
formulation of very representative prototypes.

A practical problem with the use of the spectral data
is the large dimension of the data. A possible solution is to
use PCA for the extraction of the most relevant information.
Table 4 presents results of running the same battery of
algorithms on the PCA representation of the spectral data
(30 features). We observe very high accuracies for the
reduced set. For practical purposes, a model based on a
reduced set of features is best. But we lose interpretability
of the features, in this particular case, the wavelength band
that would be critical for detection of a particular disease.
However, GMLVQ also provides us with another advantage
to reconstruct the original features using the coefficients thus
30 principal components are a good representation for our
problem.

6. Conclusion

In this paper we have shown the efficacy of using
spectral data to do field diagnosis of disease compared
with image data, the de-facto automated diagnosis method-
ology. Experiments show a significant gain in prediction
accuracy for disease with spectral data. This work has also
demostrated the consistency of spectral data collection from
different parts of the leaf. Particularly of interest is the
collection of spectral data from the good part of the leaf
which has implications for doing detection of disease in the
plants before they are symptomatic. This will form the crust
of our future work.
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