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Factorial Switching Linear Dynamical Systems
applied to Physiological Condition Monitoring

John A. Quinn, Christopher K.I. Williams, Neil McIntosh

Abstract— Condition monitoring often involves the analysis of
systems with hidden factors that switch between different modes
of operation in some way. Given a sequence of observations, the
task is to infer the filtering distribution of the switch setting at
each time step. In this paper we present factorial switching linear
dynamical systems as a general framework for handling such
problems. We show how domain knowledge and learning can be
successfully combined in this framework, and introduce a new
factor (the “X-factor”) for dealing with unmodelled variation.

We demonstrate the flexibility of this type of model by applying
it to the problem of monitoring the condition of a premature
baby receiving intensive care. The state of health of a baby
cannot be observed directly, but different underlying factors are
associated with particular patterns of physiological measurements
and artifacts. We have explicit knowledge of common factors
and use the X-factor to model novel patterns which are clinically
significant but have unknown cause. Experimental results are
given which show the developed methods to be effective on typical
intensive care unit monitoring data.

Index Terms— Condition monitoring, switching linear dynam-
ical system, switching Kalman filter, novelty detection, intensive
care.

I. INTRODUCTION

CONDITION monitoring often involves the analysis of sys-
tems with hidden factors that “switch” between different

modes of operation and collectively determine the observed data.
Given just the monitoring data, we are interested in recovering
the state of the factors that gave rise to it. In real-world data
(from medicine, robotic control or finance, for example) it may
be the case that there are a very large number of possible factors,
and that we only have explicit knowledge of commonly occurring
ones.

We consider the use of factorial switching linear dynamical
systems (FSLDS) for this kind of problem. The switch setting is
determined by a number of discrete factors. When conditioned
on the factor settings, the FSLDS is equivalent to a linear
dynamical system (LDS), which has two types of variables that we
call observations and state. The state denotes continuous-valued
quantities; we can use this to model the “true” values relating
to different aspects of the system being monitored (see below).
The observations are those readings obtained from the monitoring
equipment, and in general might be subject to corruption by
artifact and sensor noise.

Unfactorised switching linear dynamical systems (SLDS) [1],
[2] have been used previously in applications such as detecting
faults in mobile robots [3], monitoring industrial processes [4],
[5], modelling human motion [6], [7], modelling financial series
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[8], modelling creatinine levels in patients with kidney transplants
[9] and speech recognition [10]. Factorial switching linear dynam-
ical systems have also been used recently for speech recognition
[11] and musical transcription [12]. Their use was also reported
in our conference papers [13], [14], which this paper extends.

A common feature of previous FSLDS work is a lack of
diversity in the factors. Some of this work has a small number of
factors; in [11] there are two, one modelling vocal-tract resonance
and one modelling measurable acoustics. Factors can also be
higher in number but similar in nature, as in [12] where each
represents a different note in a polyphonic transcription. All
previous work additionally assumes that there are a fixed number
of factors which are known in advance. In this paper we build
on the success of previous (F)SLDS applications by focusing on
cases where the factors may be numerous and of a diverse nature.
We also consider the possibility that we do not have explicit
knowledge of all factors governing the data.

We demonstrate the flexibility of the FSLDS model in this
context by applying it to the problem of monitoring the condition
of a premature baby receiving intensive care. The state of health
of a baby cannot be observed directly, but different states of health
are associated with particular patterns of measurements, e.g. in
the heart rate, blood pressure and temperature. In this case the
factors can be both physiological (such as a spontaneous slowing
of the heart) or artifactual (such as a probe disconnection), and are
potentially so numerous that it would be impractical to explicitly
model them all. We exploit known structure between the factors
and observation channels, e.g. so that only a subset of factors
influence a given channel.

The main contributions of this paper are as follows:
• We show that it is often impractical to model all possible

factors affecting the observations. To deal with this situation
we introduce an ”X-factor” to handle unmodelled variation.

• We demonstrate how to exploit knowledge of the structure
of how the various latent factors interact so as to reduce
the amount of training data needed for the system. A
combination of domain knowledge engineering and learning
is used to produce an effective solution.

• We demonstrate that the FSLDS framework can be applied
effectively to the important real-world problem of neonatal
condition monitoring.

We describe the model in section II, discussing learning,
verification, and relative merits compared to alternative models for
condition monitoring. In section III we consider the case where
monitoring data is influenced by factors we do not know about
in advance, possibly in conjunction with other factors which we
do know about. Inference in the model is discussed in section
IV. In section V we show how the FSLDS can be applied to the
neonatal condition monitoring. We give experimental results for
this application in section VI, and draw conclusions in section
VII. Demonstration code is available [15].
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II. MODEL DESCRIPTION

We first review the SLDS before generalising to the factorial
case. In such models, the hidden switch setting st affects the
hidden continuous state xt and the observations yt. Conditional
on a particular switch setting, the model is equivalent to a linear
Gaussian state-space model (Kalman filter). The switch setting
evolves according to the transition probabilities p(st|st−1), and
for a given setting of st the hidden continuous state and the
observations are related by:

xt ∼ N
“
A(st)xt−1 + d(st),Q(st)

”
(1)

yt ∼ N
“
C(st)xt,R

(st)
”

(2)

where x ∈ Rdx and y ∈ Rdy . Here A(st) is a square system
matrix, d(st) is a drift vector, C(st) is the state-observations
matrix, and Q(st) and R(st) are noise covariance matrices.
Note that in this formulation, all dynamical parameters can be
switched between regimes. Similar models referred to in the above
literature sometimes switch only the state dynamics {A,Q}, or
the observation dynamics {C,R}.

It is possible to factorise the switch variable, so that M factors
f

(1)
t . . . f

(M)
t affect the observations yt. The factor f (m) can take

on L(m) different values. The state space is the cross product of
the factor variables,

st = f
(1)
t ⊗ . . .⊗ f

(M)
t (3)

with K =
QM

m=1 L(m) being the number of settings that st can
take on. The value of f

(m)
t depends on f

(m)
t−1 . The factors are a

priori independent, so that

p(st|st−1) =

MY
m=1

p
“
f

(m)
t |f (m)

t−1

”
. (4)

Notice that the factors are not, in general, a posteriori indepen-
dent. The joint distribution of the model is

p(s1:T ,x1:T ,y1:T ) = p(s1)p(x1)p(y1|x1, s1) .

TY
t=2

p(st|st−1)p(xt|xt−1, st)p(yt|xt, st)
(5)

where s1:T denotes the sequence s1, s2, . . . , sT and similarly for
x1:T and y1:T . p(xt|xt−1, st) is defined in eq (1), p(yt|xt, st)

in eq (2) and p(st|st−1) in eq (4). By considering the factored
nature of the switch setting, we have an observation term of the
form p(yt|xt, f

(1)
t , . . . , f

(M)
t ). This can be parameterised in dif-

ferent ways. In this work, we specify conditional independencies
between particular components of the observation yt given the
factor settings. This is explained further in sections II-B and V-E.
Although we make use of prior factored dynamics in eq (4) in
this work, it is very simple to generalize the model so that this
no longer holds. The inference algorithms described in section IV
can still be applied. However, the separate factors are crucial in
structuring the system dynamics and observations model.

A. Learning

In a condition monitoring problem, it is assumed that we are
able to interpret at least some of the regimes in the data; otherwise
we would be less likely to have an interest in monitoring them.
We can therefore usually expect to obtain some labelled training
data {y1:T , s1:T }. When available, this data greatly simplifies

the learning process, because determining the switch setting in
the (F)SLDS makes the model equivalent to a linear dynamical
system, therefore making the process of parameter estimation a
standard system identification problem.

Given training data with known switch settings, the learning
process is therefore broken down into the training of a set of LDS
models—one per switch setting. We might choose a particular
parameterisation, such as an autoregressive (AR) model of order
p hidden by observation noise and fit parameters accordingly [16].
Expectation maximisation can be useful in this setting to improve
parameter settings given an initialisation [17]. We describe partic-
ular methods used for parameter estimation in the physiological
monitoring application in section V which incorporate both of
these ideas. Note that if labellings for the training data were not
available, it would still be possible to learn the full switching
model directly using EM [11] or variational learning [18].

When labelled training data is available, estimates of the factor
transition probabilities are given by

P (f
(m)
t = j|f (m)

t−1 = i) =
nij + ζPM

k=1 nik + ζ
, (6)

where nij is the number of transitions from factor setting i to
setting j in the training data. The constant terms ζ (set to ζ = 1

in the experiments described later in the paper) are added to stop
any of the transition probabilities being zero or very small.

Some verification of the learned model is possible by clamping
the switch setting to a certain value and studying the resulting
LDS. One simple but effective test is to draw a sample sequence
and check by eye whether it resembles the dynamics of training
data which is known to follow the same regime. Some insight
into the quality of the parameter settings can also be gained by
considering estimation of the hidden state x in the LDS. The
Kalman filter equations yield both an innovation sequence, ỹ1:T

(the difference between the predicted and actual observations),
and a specification of the covariance of the innovations under ideal
conditions. An illuminating test is therefore to compare the actual
and ideal properties of the innovation sequence when applied to
training data. In particular, the innovations ỹt should come from
a Gaussian distribution with zero mean and a specific covariance,
and should be uncorrelated in time. We find in practice that such
tests are highly significant when training (F)SLDS models for
condition monitoring. For more details about verification in linear
dynamical systems, see [19, §5.5].

B. Learning the factorial model

The previous discussion assumes that we train the model con-
ditioned on each switch setting independently, and then combine
parameters. Where there are many factors this implies a great
quantity of training data is needed. In practice, however, this
requirement can be mitigated.

Where there are several measurement channels it may be found
that some factors “overwrite” others. For example, if we are moni-
toring the physiological condition of a patient, we might have two
factors: heart problem and probe disconnection. If there is a heart
problem and the probe is disconnected, then we would see the
same measurements as though only the probe was disconnected
(that is, a sequence of zeros). It is often possible to specify
an ordering of factors such that some overwrite measurement
channels of others in this way. The significance of this is that
examples of every combination of factors do not need to be found
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Fig. 1. Graphical representations of different factorial models, with M = 2
factors. Squares are discrete values, circles are continuous and shaded nodes
are observed. (a) The Factorial HMM, (b) the Factorial AR-HMM, in which
each observation depends on previous values.

in order to train the factorial model. The factors can be trained
independently, and then combined together by reasoning about
which channels are overwritten for each combination. Details for
the physiological monitoring application are given in section V-E.

C. Comparison with other switching models for condition moni-
toring

We have assumed the existence of a discrete switch variable
which indexes different modes of operation. In our formulation,
the problem of condition monitoring is essentially to infer the
value of this switch variable over time from new data. We are
particularly interested in the class of models in which there are
first-order Markovian transitions between the switch settings at
consecutive time steps. Given the switch setting is is possible to
characterise the different dynamic regimes on other ways, yielding
alternative models for condition monitoring. In this section, we
first review the hidden Markov model (HMM) and autoregressive
hidden Markov model (AR-HMM), and then discuss their advan-
tages and disadvantages for condition monitoring with respect to
the (F)SLDS.

A simple model for a single regime is the Gaussian distribu-
tion on yt. When this is conditioned on a discrete, first-order
Markovian switching variable, we obtain an instance of a HMM.
This model can therefore be used for condition monitoring when
the levels and variability of different measurement channels are
significant (though note that in general the HMM can use any
reasonable distribution on yt).

Autoregressive (AR) models are a common choice for mod-
elling stationary time series. Conditioning an AR model on a
Markovian switching variable we obtain an autoregressive hidden
Markov model (AR-HMM), also known as a switching AR
model—see e.g. [20]. This provides a model for conditions in
which observations might be expected to oscillate or decay, for
example. During inference, the model can only confidently switch
into a regime if the last p observations have been generated
under that regime; there will be a loss of accuracy if any of
the measurement channels have dropped out in that period, for
example, or another artifactual process has affected any of the
readings.

The general condition monitoring problem involves indepen-
dent factors which affect a system. In both of these models the
switch variable can be factorised, giving the factorial HMM [21]
and the factorial AR-HMM respectively. The graphical models
for these two constructions are shown in Figure 1.

Artifactual state

True state

Observations

Factor 2 (physiological)  

Factor 1 (artifactual)

Fig. 2. Factorial switching linear dynamical system for physiological
condition monitoring, with M = 2 factors as an example. The state is split
up into two sets of variables, containing estimates of the ‘true’ physiology
and of the levels of artifactual processes.

By characterising each regime as a linear Gaussian state-
space model we obtain the (F)SLDS. The SLDS can be thought
of as a “hybrid” model, having both discrete switch settings
as in the HMM and continuous hidden state as in a linear
dynamical system. The FSLDS is similar, though with the discrete
switch setting structure of the factorial HMM. Note, however,
that observations in the FHMM [21] are generated through an
additive process in which each factor makes a contribution. The
mechanisms used to generate observations under different factor
settings can in general be more complex and nonlinear than this,
as in the the overwriting mechanism explained in section II-B.

(F)SLDS models have a number of representational advantages
for condition monitoring. First, we can have many dimensions of
hidden state for each observed dimension. This allows us to deal
with situations in which different elements affect the observations.
For example, consider again the case where some observations
are corrupted by artifact, e.g. where there is a fault with the
monitoring equipment and measurements temporarily drop out
to zero. With extra dimensions in the hidden state, we have the
potential to keep track of how the “real” signal might be evolving.
While the physiology is unobserved in this way, the discrete
switch settings can evolve according to prior dynamics—the most
desirable strategy when there is no evidence.

In the physiological monitoring case, for example, we can
construct detailed representations of the causes underlying ob-
servations. For instance, the state can be split into two groups of
continuous latent variables, those representing the “true” physi-
ology and those representing the levels associated with different
artifactual processes. Similarly, factors can be physiological or
artifactual processes. Physiological factors can affect any state
variable, whereas artifactual processes affect only artifactual
state. This formulation of the model for physiological condition
monitoring is illustrated in Figure 2. More specific details of the
model structure in this application are given in section V.

The (F)SLDS also gives us the ability to represent different
sources of uncertainty in the system. We can explicitly specify
the intra-class variability in the dynamics using the parameter Q

and the measurement noise using the parameter R. There is no
way to make this distinction in either of the other models, which
have only one noise term per regime.

The application-specific details in section V provide further
examples of how this flexibility can be utilised in practise.
However, this flexibility in the FSLDS is obtained at the cost of
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greater complexity, particularly in terms of computing inferences,
as we examine in section IV.

III. NOVEL CONDITIONS

So far we have assumed that the monitoring data contains a
limited number of regimes, for which labelled training data is
available. In real-world monitoring applications, however, there
is often such a great number of potential dynamical regimes
that it might be impractical to model them all, or we might
never have comprehensive knowledge of them. It can therefore
be useful to include a factor in the condition monitoring model
which represents all “unusual cases”.

In this section we present a method for modelling previously
unseen dynamics as an extra factor in the model, referred to as
the “X-factor”. This represents all dynamics which are not normal
and which also do not correspond to any of the known regimes.
A sequence of data can only be said to have novelty relative to
some reference, so the model is learnt taking into account the
parameters of the normal regime. The inclusion of this factor in
the model has two potential benefits. First, it is useful to know
when novel regimes are encountered, e.g. in order to raise an
alarm. Second, the X-factor provides a measure of confidence for
the system. That is, when a regime is confidently classified as
“none of the above”, we know that there is some structure in the
data which is lacking in the model.

A. The X-factor

First consider a case in which we have independent, one-
dimensional observations which normally follow a Gaussian
distribution. If we expect that there will also occasionally be
spurious observations which come from a different distribution,
then a natural way to model them is by using a wider Gaussian
with the same mean. Observations close to the mean retain a high
likelihood under the original Gaussian distribution, while outliers
are claimed by the new model.

The same principle can be applied when there are a number of
known distributions, so that the model is conditionally Gaussian,
y|s ∼ N

“
µ(s), Σ(s)

”
. For condition monitoring we are interested

in problems where we assume that the possible settings of s

represent a “normal” mode and a number of known additional
modes. We assume here that the normal regime is indexed by
s = 1, and the additional known modes by s = 2, . . . , K. In this
static case, we can construct a new model, indexed by s = ∗, for
unexpected data points by inflating the covariance of the normal
mode, so that

Σ(∗) = ξΣ(1), µ(∗) = µ(1) , (7)

where normally ξ > 1. We refer to this type of construction
for unexpected observations as an “X-factor”. The parameter ξ

determines how far outside the normal range new data points
have to fall before they are considered “not normal”.

The likelihood functions for a normal class and a corresponding
X-factor are shown in Figure 3(a). Clearly, data points that are far
away from the normal range are more likely to be classified as
belonging to the X-factor. For condition monitoring this can be
used in conjunction with a number of known classes, as shown
in 3(b). Here, the X-factor has the highest likelihood for regions
which are far away from any known modes, as well as far away
from normality.

We can generalise this approach to dynamic novelty detection
by adding a new factor to a trained factorial switching linear
dynamical model, by inflating the system noise covariance of the
normal dynamics

Q(∗) = ξQ(1) , (8)n
A(∗),C(∗),R(∗),d(∗)

o
=

n
A(1),C(1),R(1),d(1)

o
(9)

In the LDS, any sequence of x’s is jointly Gaussian. Consider the
case where the state is a scalar variable; the eigenfunctions are
sinusoids and the eigenvalues are given by the power spectrum.
Increasing the system noise has the effect of increasing the
power at all frequencies in the state sequence (see for example
Figure 3(c)). Hence we have a dynamical analogue of the static
construction given above.

A similar model for changes in dynamics is mentioned by
West and Harrison [22, p. 458 and §12.4], who suggest it as
the parameterisation of an extra state in the unfactorised SLDS
for modelling large jumps in the x-process, and suggest setting
ξ = 100. Their analysis in §12.4.4 shows that this is used to
model single-time-step level changes, and not (as we are doing)
sustained periods of abnormality. We find a much smaller value
ξ = 1.2 to be effective for our task (larger values of ξ mean
that an observation sequence must deviate further from normal
dynamics to be claimed by the X-factor). A different generative
model for the X-factor in principle would be white noise, but we
find in practice that this model is too dissimilar to the real signal
and is not effective.

Note that the nature of the measurement noise, and hence the
value of the parameter R(s), is assumed to be the same for both
the normal regime and for the X-factor. Care needs to be taken
that the known factor dynamics do not have a very high variance
compared to the normal dynamics. It is clear from Figure 3(b)
that the X-factor will not be effective if any of the factors are
wider than normality. This can be ascertained by examining the
spectra of the different model dynamics.

B. Interaction with other factors

It was described in section II-B how factors in a factorial
model overwrite different dimensions in the hidden state. As
the X-factor operates on every state dimension, there are two
possibilities for combining it with other known factors: either it
can overwrite everything, or it can be overwritten by everything
(except normality). For this application the latter approach is
more sensible, so that for example if there is a period of unusual
dynamics and an ECG probe dropout then the dropout dynamics
generate the heart rate observations and the X-factor generates all
other channels.

C. Learning

Unlike the factors for which we have an interpretation, we do
not assume that labelled training data is available for learning X-
factor dynamics. We therefore consider a partial labelling of the
training data y1:T , comprising of annotations for known factors
and for some representative quantity of normal dynamics. The
remainder of the training data is unlabelled, giving us a semi-
supervised learning problem.

To apply the expectation-maximisation algorithm to the X-
factor within a SLDS (non-factorised switch setting), the M-step



5

y

p(
y|

s)

y

p(
y|

s)

0 1/2
f

S
y(f

)

(a) (b) (c)

Fig. 3. (a) Class conditional likelihoods in a static 1D model, for the normal class (solid) and the X-factor (dashed). (b) Likelihoods of the normal class and
X-factor in conjunction with other known, abnormal regimes (shown dotted). (c) The power spectral density of a latent AR(5) process with white observation
noise (solid), and that of a corresponding X-factor process (dashed).

update to ξ is given by

ξ̃ =
1PT

t=2 p(st = ∗|y, θold)
.

TX
t=2

(x̂t−A(1)x̂t−1)
>Q(1)−1

(x̂t −A(1)x̂t−1)p(st = ∗|y, θold)

(10)

where st = ∗ indexes the X-factor switch setting at time t and
x̂t is the mean of the inferred state distribution (we describe
strategies for calculating this in section IV). The parameters A(1)

and Q(1) are the system matrix and system noise covariance ma-
trix respectively for the normal dynamical regime. Intuitively, this
update expression calculates a Z-score, considering the covariance
of novel points and the covariance of the normal regime. Every
point is considered, and is weighted by the probability of having
been generated by the X-factor regime. Note that (10) does not
explicitly constrain ξ̃ to be greater than 1, but with appropriate
initialisation it is unlikely to violate this condition.

The factorial case is a little more complicated due to the
possibility that different combinations of factors can overwrite
different channels. For example, if a bradycardia is occurring in
conjunction with some other, unknown regime, then the heart rate
dynamics are already well explained and should not be taken into
account when re-estimating the X-factor parameter ξ.

A derivation of (10) and an extension to the factorial case is
given in [23, §C.4].

D. Relation to work in novelty detection

There is a large body of work on statistical approaches to
novelty detection, reviewed in [24]. In general the goal is to learn
the density of training data and to raise an alarm for new data
points which fall in low density areas. In a time-series context
this involves modelling the next observation p(yt+1|y1:t) based
on the earlier observations, and detecting observations that have
low probability. This method is used, for example, by Ma and
Perkins [25]. Such approaches define a model of normality, and
look for deviations from it, e.g. by setting a threshold.

A somewhat different take is to define a broad ‘outlier’ distribu-
tion as well as normality, and carry out probabilistic inference to
assign patterns to the normal or outlier components. For time-
series data this approach was followed by Smyth [26], who
considered the use of an unknown state when using a HMM for
condition monitoring. This uses a similar idea to ours but in a
simpler context, as in his work there is no factorial state structure
and no explicit temporal model.

IV. INFERENCE

In this application we are interested in filtering, but the time
taken to calculate the exact filtering distribution p(st,xt|y1:t) in
the switching linear Gaussian state-space model scales exponen-
tially with t, making it intractable. This is because the proba-
bilities of having moved between every possible combination of
switch settings in times t − 1 and t are needed to calculate the
posterior at time t. Hence the number of Gaussians needed to
represent the posterior exactly at each time step increases by a
factor of K, the number of cross-product switch settings. The
intractability of inference in this model is rigorously demonstrated
in [27], which also concentrates on a fault diagnosis setting.

Various approximation schemes are possible to make inference
tractable, and we concentrate on two: use of a Gaussian sum
approximation, and Rao-Blackwellised particle filtering.

A Gaussian Sum approximation [1] can be used to reduce the
time required for inference. At each time step we maintain an
approximation of p(xt|st,y1:t) as a mixture of K Gaussians.
Calculating the Kalman updates and likelihoods for every possible
setting of st+1 will result in the posterior p(xt+1|st+1,y1:t+1)

having K2 mixture components, which can be collapsed back
into K components by matching means and variances of the
distribution for each setting of st, as described in [28].

Rao-Blackwellised particle filtering (RBPF) [29] is another
technique for approximate inference, which exploits the condi-
tionally linear dynamical structure of the model to try to select
particles close to the modes of the true filtering distribution.
A number of particles are propagated through each time step,
each with a switch state st and an estimate of the mean and
variance of xt. A value for the switch state st+1 is obtained
for each particle by sampling from the transition probabilities,
after which Kalman updates are performed and a likelihood
value can be calculated. Based on this likelihood, particles can
be either discarded or multiplied. Because Kalman updates are
not calculated for every possible setting of st+1, this method
can give a significant increase in speed when there are many
factors. The fewer particles used, the greater the trade-off of
speed against accuracy, as it becomes less likely that the particles
can collectively track all modes of the true posterior distribution.
RBPF has been shown to be successful in condition monitoring
problems with switching linear dynamics, for example in fault
detection in mobile robots [3].

In condition monitoring we sometimes want to treat zero
measurements specially, as missing values. An obvious way to do
this is to have a set of dropout factors, one for each measurement
channel, which have zeros in the observation matrix C to indicate
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the quantity not being observed. We can effectively calculate these
on the fly, by checking at each step in the inference routine for
the presence of a zero in each measurement. When this occurs,
the corresponding column of C(i) is set to zero for all i.

We can also exploit the knowledge that the factor settings in
a given application might tend to change slowly relative to the
frequency of the measurements. Within the factorial model, it
is possible to constrain the transitions so that only one factor
can change its setting at each time step. Using the Gaussian
sum approximation, this speeds up inference from order O(K2)

per time step to O(K log K). We use this approximation in the
experiments described in section VI.

V. APPLICATION TO NEONATAL CONDITION MONITORING

We now turn our attention to the application of monitoring
the condition of a premature baby receiving intensive care.
Babies born three or four months prematurely in their first week
post partum are kept in a closely regulated environment, with
measurements of the heart rate, blood pressure, temperature and
so on taken every second. An experienced clinician can make
inferences about a baby’s condition based on these signals, though
this task is complicated by the fact that the observations depend
not just on the state of a baby’s physiology but also on the
operation of the monitoring equipment. There is observation noise
due to inaccuracies in the probes, and some operations can cause
the measurements to become corrupted with artifact.

Much of the time babies can be expected to be in a “normal”
state, where a degree of homeostasis is maintained and mea-
surements are stable. In specific situations, characteristic patterns
can appear which indicate particular conditions or pathologies.
Some patterns are common and can be easily recognised, whereas
at other times there might be periods of unusual physiological
variation to which it is difficult to attribute a cause.

In this section, we first review previous work in intensive
care unit (ICU) monitoring, then summarise the measurement
channels which are to be analysed in this particular application.
Constructing the model involves a combination of learning and
domain knowledge. We first characterise the normal dynamics of
the measurements, and then learn factor dynamics one by one to
obtain the full factorial model.

A. Relation to previous work on ICU monitoring

We briefly review some relevant work in the specific area of
intensive care unit monitoring. This work broadly fits into two
categories. One approach is based on using domain knowledge
to formulate high-level representations of particular patterns or
situations, then to find suitable abstractions of the data in order
to apply some matching rules. In this type of work, the goal is to
describe what is happening, and sometimes to suggest what to do
next; an interpretation is put on the data. Different schemes for
heuristic description of patterns have been used, see for example
[30]–[32].

By contrast, another body of work is based on making infer-
ences of a statistical nature from monitoring data using time series
analysis techniques. The goal in this case is to use the method-
ology of time series analysis to obtain informative descriptions
of the data, which offer insight into the underlying processes.
Notably, a switching linear dynamical system was used in [9] in
order to identify statistically significant changes in liver function.

1

2

3

4

5

6

Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5)
peripheral temperature probe, 6) transcutaneous probe.

Parametric models such as AR processes have been used to
identify significant changes (e.g. level changes or slope changes)
in physiological dynamics [33], [34]. Other work in this category
has looked at finding segmentations of physiological monitoring
data, e.g. finding segments which are approximately linear [35],
[36].

The first of these bodies of work uses expert knowledge, but
captures it using a series of ad-hoc frameworks. The second uses
established statistical techniques, but in general without incorpo-
rating the same level of expert insight and interpretation. The
work described in this paper is motivated by the idea that these
two approaches are not mutually exclusive, and uses extensive
knowledge engineering within a principled (probabilistic) time
series analysis framework.

B. Measurement channels

We now briefly describe the observations which are to be used
in this application. A number of probes, illustrated in Figure
4, continuously collect physiological data from each baby. The
resulting data channels are listed in Table I. Heart rate is obtained
either from the ECG unit or blood pressure sensor. The latter
also derives systolic and diastolic blood pressure measurements
(the arterial pressure when the heart is contracting and relax-
ing, respectively). A transcutaneous probe, sited on the chest,
measures the partial pressures of oxygen (TcPO2) and carbon
dioxide (TcPCO2) in the blood1. A pulse oximeter, attached to
the foot, measures the saturation of oxygen in arterial blood—
a related but different quantity to transcutaneous O2. The core
temperature and peripheral temperature are measured by two
probes, one of which is placed under the baby’s back (or under
the chest if the baby is prone) and the other attached to a foot. In
addition, environmental measurements (ambient temperature and
humidity) are collected directly from the incubator. The probes
used to collect these measurements are illustrated in Figure 4.
All these measurements are taken once per second. All the data
channels are applied without preprocessing to the model, with
the exception of incubator humidity. It is necessary to apply a
form of smoothing to this data channel because of measurement
quantisation; the measurements change gradually relative to the
measurement accuracy in this case, resulting in a “stepped” signal
which causes problems during learning and inference.

1Various gases are dissolved in the bloodstream, and the partial pressure
is used to quantify the amount of each. It is the amount of pressure that a
particular gas would exert on a container if it was present without the other
gases.
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TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (◦C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (◦C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2

Systolic blood pressure (mmHg) Sys. Bp
Transcutaneous partial pressure of CO2 (kPa) TcPCO2

Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p1) signal varies around an AR(p2) baseline, as given by the
following equations:

xt − bt ∼ N

 
p1X

k=1

αk(xt−k − bt−k), η1

!
, (11)

bt ∼ N

 
p2X

k=1

βkbt−k, η2

!
, (12)

where η1, η2 are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:

xt =

2664
xt

xt−1

bt

bt−1

3775 , A =

2664
α1 α2 1− α1 −α2

1 0 0 0

0 0 β1 β2

0 0 1 0

3775 , (13)
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.

Q =

2664
η1 + η2 0 0 0

0 0 0 0

0 0 η2 0

0 0 0 0

3775 , C = [1 0 0 0] . (14)

It is straightforward to adjust this construction for different values
of p1 and p2. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt − βXt−1) = α1(Xt−1 −
βXt−2) + Zt where β = 1 and Zt ∼ N(0, σ2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set β = 0.999 and with |α1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.
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systolic and diastolic blood pressures have the same structure—
an AR(2) signal with an ARIMA(1,1,0) baseline. Transcutaneous
O2 and CO2 are well modelled by an AR(2) signal with AR(1)
baseline. All temperature measurements are modelled with an
AR(1) signal and AR(1) baseline. Oxygen saturation and incu-
bator humidity do not have a changing baseline, and are both
sufficiently well modelled by AR(1) processes.

D. Learning dynamics under known factors

Having built a model for normal dynamics, in which the baby
is stable and the monitoring equipment is operating correctly, we
are in a position to consider different types of deviations from
this regime, in which different factors can “overwrite” the model
parameters. In this section, we show how the dynamics can be
trained for the cases in which we have interpretable factor patterns
(and can therefore obtain training data).

1) Drop-outs : Probe dropouts, which cause the observations
on a given channel or set of channels to go to zero, are simple
to model in this framework by taking normal dynamics and
changing the appropriate entry in the observation matrix C to
zero. This indicates that the relevant underlying physiology is
entirely unobserved. In this way, the estimates of the underlying
physiology are unaffected. Normal dynamics continue to update
the estimates of the true physiology, but without being updated
by the observations. The Kalman gain is always zero, so that the
new observations have no weight upon the estimates. Uncertainty
therefore increases until reaching a stable state.

2) Temperature probe disconnection : When a temperature
probe becomes disconnected, artifactual measurements are re-
ceived which reflect the transition of the probe from thermal
equilibrium with the baby’s body to equilibrium with the air
in the incubator. The decay rate should be the same for each
disconnection, since the same type of probe is used which
therefore has the same thermal inertia. This gives a way of
telling whether the probe is cooling according to Newton’s laws
of cooling or whether the baby is getting colder, for which
there is no reason to assume the same type of dynamics. An
exponential decay model (equivalent to an AR(1) process) for
the artifactual temperature measurements is fitted using the Yule-
Walker equations. During normal dynamics (temperature probe
correctly applied), the artifactual temperature state is tied to the
physiological temperature state. See Figure 6(b) for an example.

3) Blood sampling : An arterial blood sample might be taken
every few hours from each baby. This involves diverting blood
from the arterial line containing the pressure sensor, causing heart
rate readings to cease. Throughout the operation a saline pump
acts against the sensor, causing an artifactual ramp in the blood
pressure measurements. The slope of the ramp is not always the
same, as the rate at which saline is pumped can vary. See Fig.
7(b) for an example.

The average gradient of these artifactual ramps can be learnt
for all blood samples, and used as a constant linear drift term. A
state-space is then formulated which has a random walk on the
differences of the data with a small noise term. In this way, the
average drift is used as an initial guess, and the integrated random
walk term can alter this guess to converge with the data.

4) Opening of the incubator : Incubator humidity and temper-
ature are closely regulated, so that with all incubator portals shut
the ambient humidity and temperature readings normally have low
variance. When a portal is opened there is a significant drop in

TABLE II
PARTIAL ORDERING OF FACTORS OVERWRITING PHYSIOLOGICAL

CHANNELS. FACTORS HIGHER ON THE LIST OVERWRITE THE CHANNELS

ON LOWER FACTORS.
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Blood sample � � �

Temp. disconnection �

Incubator open � � � �

TCP recalibration � �

Bradycardia �

X-factor � � � � � � � �

Normal � � � � � � � �

these readings. These drops can be modelled as an AR(1) decay,
where the level to which these measurements drop is unknown
but cannot be lower than the humidity and temperature of the
room.

The opening of the incubator implies that an intervention to
the baby is taking place. This can be expected to have some
kind of physiological effect, normally an increase of variance on
the cardiovascular channels and a slight decrease in peripheral
temperature due to the influx of room air in the incubator. Param-
eters can then be set by repeating the process for training normal
dynamics on data which was obtained during handling episodes.
In practice, this tends to result in physiological dynamics that
are similar to the normal dynamics but with a larger system
noise term. The signficant change in incubator humidity dynamics
distinguishes this factor from the X-factor.

5) Bradycardia : Bradycardia is a slowing of the heart rate,
and brief episodes are common for premature infants. It can have
many causes, some benign and some serious. Bradycardic drops
and subsequent rises in heart rate were found to be adequately
modelled by retraining the ARIMA(1,1,0) model for baseline
heart rate dynamics. The high frequency heart rate dynamics are
kept the same as for the stable heart rate regime. As for the normal
regime, this model learnt in terms of hidden ARIMA processes
was used as an initial setting and updated with three iterations of
EM.

6) Transcutaneous probe recalibration : Transcutaneous
probes (TCPs) need to be recalibrated every few hours, and the
resulting artifactual patterns have a number of distinct stages. First
there is the application of a calibration solution to the probe, then
the removal of this solution so that the probe gives a reading in
room air, then the reapplication of the probe to the baby. After
this final step, the levels of the measurements decay to the true
physiological levels. The constant levels of the first stage do not
require any dynamics to model; only a mean and a variance need
to be specified. The other two stages are modelled as exponential
decays.

E. Learning the factorial model

In section II-B we discussed the possibility of specifying a
partial ordering of factors, such that some can overwrite particular
observation channels of others. This is developed from earlier
work in [38]. Table II shows the ordering of factors in this appli-
cation, for example where the ‘Incubator open’ factor overwrites
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the normal blood pressure dynamics, but is itself overwritten by
the ‘Blood sample’ factor (that is, if these two factors occur
simultaneously, the blood pressure dynamics are entirely governed
by the blood sample factor). Knowing this structure substantially
reduces the amount of training data required. We simply learn
LDS parameters for individual factor settings and then combine
them accordingly [23, §5.10].

VI. EXPERIMENTS

This section describes experiments used to evaluate the model
for condition monitoring. Experiments done to evaluate the
classification of known patterns are described in section VI-A,
while section VI-B describes experiments done to evaluate the
X-factor. Other than the X-factor, we consider here the incubator
open/handling of baby factor (denoted ‘IO’), the blood sample
factor (denoted ‘BS’), the bradycardia factor (denoted ‘BR’) and
the temperature probe disconnection factor (denoted ‘TD’). We
demonstrate the operation of the transcutaneous probe recalibra-
tion factor (denoted ‘TR’), but do not evaluate it quantitatively
due to a scarcity of training data. We also have a dropout factor
for each observation channel, but handle these implicitly in the
inference routine (see section IV).

Some conventions in plotting the results of these experiments
are adopted throughout this section. Horizontal bars below time-
series plots indicate the posterior probability of a particular
factor being active, with other factors in the model marginalised
out. White and black indicate probabilities of zero and one
respectively3. In general the plots show a subset of the observation
channels and posteriors from a particular model—this is indicated
in the text.

24-hour periods of monitoring data were obtained from fifteen
premature infants in the intensive care unit at Edinburgh Royal
Infirmary. The babies were between 24 and 29 weeks gestation
(around 3-4 months premature), and all in around their first week
post partum.

Each of the fifteen 24-hour periods was annotated by two
clinical experts. At or near the start of each period, a 30 minute
section of normality was marked, indicating an example of that
baby’s current baseline dynamics. Each of the known common
physiological and artifactual patterns were also marked up.

Finally, it was noted where there were any periods of data in
which there were clinically significant changes from the baseline
dynamics not caused by any of the known patterns. While the
previous annotations were made collaboratively, the two annota-
tors marked up this ‘Abnormal (other)’ category independently.
The software package TSNet [39] was used to record these
annotations, and the recorded intervals were then exported into
Matlab. The number of intervals for each category, as well as the
total and average durations, are shown in Table III. The figures
for the ‘Abnormal’ category were obtained by combining the two
annotations, so that the total duration is the number of points
which either annotator thought to be in this category, and the
number of incidences was calculated by merging overlapping
intervals in the two annotations (two overlapping intervals are
counted as a single incidence).

3A convenient property of the models evaluated here, from the perspective
of visualisation, is that the factor posteriors tend be close to zero or one.
This is partly due to the fact that the discrete transition prior p(st|st−1) is
usually heavily weighted towards staying in the same switch setting (long
dwell times).

TABLE III
NUMBER OF INCIDENCES OF DIFFERENT FACTORS, AND TOTAL TIME FOR

WHICH EACH FACTOR WAS ANNOTATED AS BEING ACTIVE IN THE

TRAINING DATA (TOTAL DURATION OF TRAINING DATA 15× 24 = 360

HOURS).

Factor Incidences Total duration Average duration

Incubator open 690 41 hours 3.5 mins
Abnormal (other) 605 32 hours 3.2 mins

Bradycardia 272 161 mins 35 secs
Blood sample 91 253 mins 2.8 mins

Temp. disconnection 87 572 mins 6.6 mins
TCP recalibration 11 69 mins 6.3 mins

TABLE IV
INFERENCE RESULTS ON THREE CV-FOLDS OF THE EVALUATION DATA.

Incu. open Core temp. Blood sample Brady.

AUC 0.87 0.77 0.96 0.88GS
EER 0.17 0.34 0.14 0.25

AUC 0.77 0.74 0.86 0.77RBPF
EER 0.23 0.32 0.15 0.28

AUC 0.78 0.74 0.82 0.66FHMM
EER 0.25 0.32 0.20 0.37

The rest of this section shows the results of performing
inference on this data and comparing it to the gold standard
annotations provided by the clinical experts.

A. Evaluation of known factors

In order to maximise the amount of test data and reduce the
possibility of bias, evaluation was done with three-fold cross
validation. The fifteen 24-hour data periods were split into three
groups of five (grouped in order of the date at which each baby
first arrived in the NICU). Three tests were therefore done for
each model, in each case testing on five babies and training on the
remaining ten, and summary statistics were obtained by averaging
over the three runs. From each 24-hour period, a 30 minute section
near the start containing only normal dynamics was reserved for
calibration (learning normal dynamics according to section V-
C). Testing was therefore conducted on the remaining 23 1

2 hour
periods.

The quality of the inferences made were evaluated using area
under the receiver operating characteristic curve (AUC) and equal
error rates (EER)4. These statistics are a useful summary of
performance when there are disparities in the numbers of points
of each class.

Summary statistics for three types of models are given in Table
IV, and the corresponding ROC curves are shown in Figure 8.
Four factors are considered (incubator open, temperature probe
disconnection, bradycardia and blood sample). Inferences are
made for the set of factors with a factorial switching linear
dynamical model, first with the Gaussian sum approximation,
and then with Rao-Blackwellised particle filtering. The number
of particles was set so that inference time was the same as for
the Gaussian sum approximate inference, in this case N = 71.

4EER is the error rate for the threshold setting at which the false positive
rate is equal to the false negative rate. This a useful statistic when the number
of true positives and negatives are unequal. We give error rates, so smaller
numbers are better (some authors give 1 - EER).
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For comparison, the same set of factors was inferred with the
FHMM model, in which training was carried out using maximum
likelihood estimation. The performance of the FHMM is a useful
comparison because it has similar structure to the FSKF but with
no hidden continuous dynamics. For all factors, the effect of
adding the continuous latent dynamics is to improve performance,
as can be seen by comparing the FHMM performance to the two
FSKF models. RBPF inferences tend to be less accurate than those
made with the Gaussian-sum approximation. This is at least partly
due to the inability of the model to sample effectively from all
the latent space when there is a high number of switch settings,
and in this case the number of possible switch settings (16) is
significant relative to the number of particles (71). Increasing the
number of particles improves the inferences somewhat, though
even when the number of particles in RBPF is doubled, we find
that AUC only increases by 2-3%, well below the Gaussian sum
results [23, §7.2.2].

It can be seen that core temperature probe disconnection is
in general the most difficult factor to infer, partly because very
long periods of disconnection are eventually misclassified by the
model as being normal.

Specific examples of the operation of these models are now
given. Figures 6-9 show inferences of switch settings made with
the FSKF with Gaussian sum approximation (denoted ‘GS’ in
Table IV). In each case the switch settings have been accurately
inferred. Figure 6 shows examples of transcutaneous probe recal-
ibration, correctly classified in conjunction with a blood sample
and a core temperature probe disconnection. Note that in 6(b) the
recalibration and disconnection begin at around the same time, as
a nurse has handled the baby in order to access the transcutaneous
probe, causing the temperature probe to become detached.

Figure 7 shows inference of bradycardia, blood sampling, and
handling of the baby. Note in 7(a) that it has been possible to
recognise the disturbance of heart rate at t = 800 as being caused
by handling of the baby, distinguished from the bradycardia
earlier where there is no evidence of the incubator having been
entered.

For the blood sample and temperature probe disconnection
factors, the measurement data bears no relation to the actual phys-
iology, and the model should update the estimated distribution
of the true physiology in these situations accordingly. Figure 9
contains examples of the inferred distribution of true physiology
in data periods in which these two artifacts occur. In each case,
once the artifactual pattern has been detected, the physiological
estimates remain constant or decay towards a mean. As time
passes since the last reliable observation, the variance of the
estimates increases towards a steady state.

B. Novelty detection

In practice, neonatal monitoring data exhibits many unusual
patterns. The number of potential unusual patterns is in fact so
great that it would be impractical to explicitly include every
possibility in a model. Examples include rare dynamical regimes
caused by sepsis, neurological problems, or the administration of
drugs, even a change of linen or the flash of a camera. Experi-
ments were done to evaluate the ability of the X-factor to represent
novel physiological and artifactual dynamics. Preliminary trials
(including EM estimation) showed ξ = 1.2 to be a suitable setting.

Three-fold cross validation was again used to analyse the
inferences of different models with different sets of factors. The

Fig. 8. ROC curves for classification of four known factors.

first model considered contained only the X-factor, the two switch
settings therefore being ‘normal’ or ‘abnormal’. The intention
with this construction was for it to place probability mass for the
X-factor on any period in which anything non-normal was hap-
pening. As the X-factor here stands in for any known or unknown
pattern, the ground truth for this model is the conjunction of all the
annotated intervals of every type—known factors and ‘abnormal’
periods. Another four models are considered, in which the known
factors are added to the model one by one. So, for the second
model the ‘Incubator Open’ factor is added and the corresponding
intervals are removed from the ground truth for the X-factor. The
factors are added in reverse order of total duration in Table III. In
the fifth set of factors each known factor has ground truth given
by the corresponding annotation, and the X-factor has ground
truth given by the ‘Abnormal (other)’ annotation. Examining the
performance of these different models and particular examples of
operation gives some insight into the operation of the X-factor,
both on its own and in conjunction with the other factors.

Summary statistics are shown in Table V, where the models
above are numbered 1-5. Only approximate Gaussian sum infer-
ence was considered here. The performance in classifying the
presence of known factors is almost the same as for when the
X-factor was not included (model ‘GS’ in Table IV), only minor
variations in AUC and EER being evident. For each of the five
models, the X-factor inferences had a rough correlation to the
annotations.

Examples of the operation of the X-factor are shown in Figures
10-12, beginning with inferences from model 5 in which the full
set of factors is present with the X-factor. Figure 10 shows two
examples of inferred switch settings under this model for periods
in which there are isolated physiological disturbances. Both the
posteriors for the X-factor and the gold standard intervals for
the ‘Abnormal (other)’ category are shown. The physiological
disturbances in both panels are cardiovascular and have clearly
observable effects on the blood pressure and oxygen saturation
measurements.
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.
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Fig. 10. Inferred switch settings for the X-factor, during periods of cardiovascular disturbance, compared to the gold standard annotations.

TABLE V
SUMMARY STATISTICS FOR THE QUALITY OF X-FACTOR INFERENCES, FOR

MODELS 1-5. SEE MAIN TEXT FOR DETAILS.

X-factor Incu. open Core temp. B. sample Brady.

AUC .72 - - - -1
EER .33 - - - -

AUC .74 .87 - - -2
EER .32 .17 - - -

AUC .71 .87 .78 - -3
EER .35 .18 .28 - -

AUC .70 .87 .78 .96 -4
EER .36 .18 .28 .14 -

AUC .69 .87 .79 .96 .885
EER .36 .18 .28 .14 .25

In Figure 10 (left), the X-factor is triggered by a sudden,
prolonged increase in blood pressure and a desaturation, in broad
agreement with the ground truth annotation. In Fig. 10 (right)
there are two spikes in BP and shifts in saturation which are
picked up by the X-factor, also mainly in agreement with the
annotation. A minor turning point in the two channels was
also picked up at around t = 2000, which was not considered
significant in the gold standard (a false positive).

Effects of introducing known factors to model (1) are shown in
Figure 11. In panel (a), there are two occurrences of spontaneous
bradycardia, HR making a transient drop to around 100bpm. The
X-factor alone in model (1) picks up this variation. Looking at the
inferences from model (5) for the same period, it can be seen that
the bradycardia factor provides a better match for the variation,
and probability mass shifts correctly: the X-factor is now inactive.
In panel (b), a similar effect occurs for a period in which a blood
sample occurs. The X-factor picks up the change in dynamics
when on its own, and when all factors are present in model (5)
the probability mass shifts correctly to the blood sample factor.
The blood sample factor is a superior description of the variation,
incorporating the knowledge that the true physiology is not being
observed, and so able to handle the discontinuity at t = 900

effectively.
Figure 12 shows examples of inferred switch settings from

model (5) in which there are occurrences of both known and
unknown types of variation. In Fig. 12(a) a bradycardia occurs in
the middle of a period of elevated blood pressure and a deep drop
in saturation. The bradycardia factor is active for a period which
corresponds closely to the ground truth. The X-factor picks up

the presence of a change dynamics at about the right time, but its
onset is delayed when compared to the ground truth interval. This
again highlights a difficulty with filtered inference, since at time
just over 1000 it is difficult to tell that this is the beginning of a
significant change in dynamics without the benefit of hindsight.
In panel (b) a blood sample is correctly picked up by the blood
sample factor, while a later period of physiological disturbance on
the same measurement channels is correctly picked up by the X-
factor. Panel (c) shows another example of the bradycardia factor
operating with the X-factor, where this time the onset of the first
bradycardia is before the onset of the X-factor. The X-factor picks
up a desaturation, a common pattern which is already familiar
from panel (a). In panel (d), an interaction between the X-factor
and the ‘Incubator open’ factor can be seen. From time 270 to
1000 the incubator has been opened, and all variation including
the spike in HR at t = 420 are attributed to handling of the
baby. Once the incubator appears to have been closed, further
physiological disturbance is no longer explained as an effect of
handling and is picked up by the X-factor.

VII. DISCUSSION

This paper has presented a general framework for inferring
hidden factors from monitoring data, and has shown its successful
application to the significant real-world task of monitoring the
condition of a premature infant receiving intensive care. We
have shown how knowledge engineering and learning can be
successfully combined in this framework. Our formulation of
an additional factor (the “X-factor”) allows the model to handle
novel dynamics. Experimental demonstration has shown that these
methods are effective when applied to genuine monitoring data.

There are a number of directions in which this work could be
continued. The set of known factors presented here is limited, and
more could usefully be added to the model given training data.
Deep oxygen desaturations, as seen in Figure 12(a) and (c), are
currently handled by the X-factor, but are a clear and significant
pattern that could be usefully learnt as a new factor. Desaturation
is usually followed by a bradycardia, since lack of oxygen to
the heart will slow it. We would therefore want to change the
bradycardia factor dynamics to be a priori dependent on the new
desaturation factor (a departure from eq. (4)). Additional factors
could include other common patterns such as hypotension, hyper-
tension, hypothermia and pyrexia, as well as serious conditions
such as pneumothorax or intraventricular haemorrhage.

Bradycardia is often associated with a compensatory rise in
blood pressure, as seen in Figure 12(a). Incorporating this effect
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Fig. 11. Inferred switch settings for the X-factor, and for known patterns for models (1) and (5) in Table V. Model (1) contains the X-factor only, whereas
model (5) includes the X-factor and all known factors. Panel (a) shows two instances of bradycardia, (b) shows a blood sample.
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Fig. 12. Inferred switch settings for the X-factor, in regions where other factors are active. In panel (a) a bradycardia occurs in conjunction with a rise in
blood pressure and deep desaturation. The X-factor is triggered around the right region but is late compared to ground truth. In panel (b), unusual BP variation
is correctly classified as being due to a blood sample, followed by variation of unkown cause. Panel (c) shows bradycardia with a desaturation picked up by
the X-factor, and (d) shows the X-factor picking up disturbance after the incubator has been entered.

into the model would help to stop the elevation in BP (which we
have an explanation for) being claimed by the X-factor. To do this,
we would introduce a new factor governing the BP observations
which is a priori dependent on the bradycardia factor.

The experiments with the X-factor have shown that there are a
significant number of non-normal regimes in the data which have
not yet been formally analysed. Future work might therefore look
at learning what different regimes are claimed by the X-factor.
This could be cast as an unsupervised or semi-supervised learning
problem within the model.

The FSLDS with novelty detection is a general model for

condition monitoring in multivariate time series, and could po-
tentially be applied in many other domains. Also, we have only
considered filtered inference in this paper, being interested in real-
time diagnosis. An interesting extension would be to consider
fixed-lag smoothing [40] in such problems.
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