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Abstract. Tracking the spread of viral crop diseases is critically im-
portant in developing countries. It is also a problem in which several
data analysis techniques can be applied in order to get more reliable
information more quickly and at lower cost. This paper describes some
novel ways in which computer vision, spatial modelling, active learning
and optimisation can be applied in this setting, based on experiences of
surveying viral diseases affecting cassava and banana crops in Uganda.

1 Introduction

The problem of monitoring the spread of infectious disease among crops in de-
veloping regions is interesting in two regards. First, it is of critical practical
significance, as the effects of crop disease can be devastating in areas where one
of the main forms of livelihood is subsistence farming. It is therefore important
to monitor the spread of crop disease, allowing the planning of interventions
and early warning of famine risk. Second, it provides an example of the scope of
opportunity for applying novel data analysis methods in under-resourced parts
of the world.

The standard practice currently in a country such as Uganda is for teams of
trained agriculturalists to be sent to visit areas of cultivation and make assess-
ments of crop health. A combination of factors conspire to make this process
expensive, untimely and inadequate, including the scarcity of suitably trained
staff, the logistical difficulty of transport, and the time required to coordinate
paper reports. Although computers remain a rarity in much of the developing
world, smartphones are increasingly available: for example they account for 15-
20% of all phones in Kenya, projected to be at 50% by the end of 2015 [2], and
there are 8 million mobile internet subscribers [6] in a country with population
of 41 million. Among other benefits, the prevalence of mobile computing devices
and mobile internet makes it easy to collect different types of data, and in new
ways such as crowdsourcing. Once data is collected electronically, this opens up
opportunities to apply computational techniques which allow the process of crop
disease survey in such an environment to be reinvented entirely.

We outline here three ways in which novel data analysis techniques can be
used to improve the speed, accuracy and cost-efficiency of crop disease survey,
using examples of cassava and banana crops in Uganda. After briefly discussing



the mobile data collection platform we have implemented for this purpose (Sec-
tion 2), we describe automated diagnosis of diseases, and image-based measure-
ment of disease symptoms (Section 3), possibilities for incorporating spatial and
spatio-temporal models for mapping (Section 4), and ways in which survey re-
sources can be used optimally by prioritising data collection at the locations that
the spatial model determines to be most informative (Section 5). These methods
are currently being trialled with collaborators in the Ugandan National Crop Re-
sources Research Institute, which specialises in cassava disease, and the Kawanda
Agricultural Research Institute, which specialises in banana disease.

2 Mobile data collection

We implemented a system for collecting crop disease survey information with
low cost (under 100 USD) Android phones, based on the Open Data Kit [3].
This provides a convenient interface for digitising the existing forms used by
surveyors, with the ability to also collect richer data including images and GPS
coordinates. Data collected on this system can be plotted on a map in real-
time, see for example http://cropmonitoring.appspot.com. Clearly there are
a number of immediate benefits from simply collecting data on a phone instead
of paper, in that costs are reduced since the time needed to do data-entry and
print paper forms far outweighs the costs of the phones and data, and results are
immediately available. It also means that the survey can be conducted without
experts being required to travel to the field; images can be collected and assessed
remotely. More importantly to the purposes of this discussion, however, it allows
data analysis methods to be applied which have the potential to fundamentally
change the way in which the survey is conducted.

3 Automated diagnosis and symptom measurement

Since the collection of survey data with mobile devices can include images of
crops, removing the requirement for experts to be physically present to carry out
inspection, we next focus on automating the judgements that those experts make
based on images of leaves and roots. A typical national-scale survey of cassava
disease in Uganda, for example, would include judgements about disease status
and levels of symptoms on around 20,000 plants. The automation of judgements
on this quantity of images constitutes a considerable saving of time and resources.
With sufficient labelled training data this is a feasible problem for many diseases
with clearly visible symptoms, and we can therefore collect data more rapidly
and at lower cost. Automatic image-based diagnosis of crop diseases from leaf
images is an active field [10, 11, 7], though little previous work has focused on
crops grown primarily in developing countries.

Symptoms which need to be assessed for cassava include the extent of necro-
sis of the roots. It is also useful to count the number of whiteflies found on the
leaves, as these are the vectors for multiple viruses. Figure 1 shows the ways in
which we can carry out these measurements using computer vision. Assessment



Fig. 1. Automated symptom measurement. Left: cassava root with necrotisation caused
by cassava brown streak disease; center: classification of pixels to measure proportion
of necrotisation; right: whitely count on cassava leaf.

Fig. 2. Banana leaf image patches. Left: healthy leaf; center: banana bacterial wilt;
right: black sitagoka disease.

of roots is currently done in the manual survey by assigning root samples to
one of five categories, from completely healthy to completely necrotised. The
main problem with this process is that the intermediate grades are easily con-
fused; automating the process with image processing leads to more accurate
and standardised results, removing the variability caused by different surveyors.
Counting whiteflies on leaves is an infuriating and slow task for surveyors. The
underside of a cassava leaf might have hundreds of these small, mobile insects,
hence accurate counts are not feasible. In image processing terms, however, this
is not a difficult problem, being essentially a form of blob detection.

Identification of viral diseases from leaf images is also possible given labelled
data for training a classification model. Figure 2 shows examples of a healthy
leaf surface and two diseases common in Uganda, banana bacterial wilt and
black sitagoka disease. We have found that classification based on colour his-
togram features gives good results, though the incorporation of texture features
is likely to improve this further. We have had similar experiences with diagnosis
of cassava diseases from leaf images [1].

We have also found that with such straightforward classification techniques,
it is possible to implement this process directly on the phone being used for the
survey for real-time feedback. Figure 3 shows how the system works when these
elements are combined. Capturing a cassava leaf image on the phone allows us
to obtain an immediate diagnosis, which is uploaded to a server and plotted on
a map online.



Fig. 3. Phone based survey with automated diagnosis. Left: mobile-phone based survey
of cassava field; center: software on the phone detects cassava mosaic disease from leaf
appearance; right: data collected with the phone is instantly uploaded to the web.

4 Incorporating a spatial model

Models of crop disease are used for understanding the spread or severity of an
epidemic, predicting the future spread of infection, and choosing disease man-
agement strategies. Common to all of these problems is the notion of spatial in-
terpolation. Observations are made at a few sample sites, and from these we infer
the distribution across the entire spatial field of interest. Standard approaches
to this problem (reviewed in [9]) include the use of spatial autocorrelation, or
Gaussian process regression [5]. Often the extent to which each plant is affected
by disease is quantified in ordinal categories, in which case a spatial model which
makes efficient use of the available data is Gaussian process ordinal regression
[8]. Temporal dynamics can be added to these models, allowing forecasts to be
made.

4.1 Combining diagnosis and mapping

The above tasks of estimating the density of an infectious disease in space and
diagnosing that disease in individual cases (as in Section 3) are generally done
separately. Informally, a surveyor may be aware of outbreaks of a disease in
particular places or seasonal variations in disease risk, and they may interpret
test results accordingly. But the diagnosis is not usually formally coupled with
estimates of disease risk from the emerging spatial model.

The tasks of mapping disease density over space and time and of diagnosing
individual cases are complementary, however. A “risk map” can be used to give
a prior in diagnosis of an individual plant with a known location. In turn, the
results of individual diagnoses can be used to update the map in a more effec-
tive way than simply making hard decisions about infection statuses and using
summary count data for the update. The potential for combining maps and diag-
nosis in this way comes about with the possibility of performing diagnosis with
networked location aware devices that can carry out the necessary calculations,
as discussed in Section 3. In practice, this combined inference of spatial disease



density and diagnosis in individual cases can be done with multi-scale Bayesian
models, as described in [4]. By selecting an appropriate model structure, this can
be done tractably even for very large numbers of individual plants as in the case
of a national survey. This can improve both the accuracy of the risk map and of
individual diagnoses, since the uncertainty in both tasks is jointly modeled.

5 Optimising survey resources

A probabilistic spatial or spatio-temporal model is useful not just in building
up a picture of the disease map, but in knowing which locations would be most
informative for collecting new data. While this was impossible in the traditional
paper-based survey system, in which data entry would happen after the return of
surveyors, the methodology described in this paper allows models to be learned
in real-time as data is collected in the field. Therefore our models can be used
to guide surveyors to collect more valuable data, holding fixed their budgeted
number of samples.

This problem is essentially active learning, in which we prefer to collect data
from locations in which the model has the lowest confidence. For example, in a
Gaussian process model, we prefer to sample from locations where the density
estimate has the highest covariance with the data already collected. This ap-
proach would be suitable for example in a crowd sourcing setting: if phones were
given to agricultural extension workers across the country, and micro-payments
are made to those workers in return for sending image data, it would be possi-
ble to adjust the levels of those payments based on location in order to use the
budget optimally with respect to building an informative model.

When we attempt to direct the progress of a survey in which data collection
teams are sent to travel around the country, the situation is a little different.
There is a fixed travel budget, e.g. for fuel, and we cannot simply collect data
from arbitrary locations on the map. Considering the constraints of being able to
travel along a given road network with some budget, this optimisation problem
is in general very complex. However, we can simplify this constraint somewhat
by considering that in rural parts of the developing world, the road network is
often sparse. This makes it reasonable to assume that survey teams will follow
a set route, corresponding to a one dimensional manifold R within the spatial
field. With a survey budget allowing k stops, we are interested in finding a set
of points along R that maximise the informativeness of the survey. Under this
constraint, optimisation is tractable with a Monte Carlo algorithm [8], where we
recompute after each stop the optimal next sample location based on the spatial
model given the most recent observation. This can also be done for multiple
groups of surveyors simultaneously traveling along different routes.

6 Discussion

This paper has outlined various ways in which computational techniques can
make crop disease survey more effective given tight resource constraints. It is an



illustration of one of the ways in which data analysis can be used to address prob-
lems in the developing world, where we often wish to automate the judgements
of experts who are in short supply, collect intelligence about socio-economic or
environmental conditions from different, noisy data sources, or optimise the al-
location of some scarce resource. Similar methods can be directly applied to
the survey and diagnosis of human disease, for example, another active area of
current work.
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