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8.1 Introduction

The gold standard test for malaria is the hundred-year-old method of prepar-
ing a blood smear on a glass slide, staining it, and examining it under a
microscope to look for the parasite genus plasmodium. While several rapid
diagnostic tests are also currently available, they still have shortcomings com-
pared to microscopical analysis [18]. In the regions worst affected by malaria,
reliable diagnoses are often difficult to obtain, and treatment is routinely pre-
scribed based only on symptoms. Accurate diagnosis is clearly important,
since false negatives can be fatal, and false positives lead to increased drug
resistance, unnecessary economic burden, and possibly the failure to treat dis-
eases with similar early symptoms such as meningitis or typhoid. The scale of
the problem is huge: annually there are 300-500 million cases of acute malaria
illness of which 1.1-2.7 million are fatal, most fatalities being among children
under the age of five [27, 21, 22].

The lack of access to diagnosis in developing countries is largely due to a
shortage of expertise, with a shortage of equipment being a secondary factor.
For example, a recent survey carried out in Uganda [34] found 50% of rural
health centres to have microscopes, but only 17% had laboratory technicians
with the training necessary to use them for malaria diagnosis. Even where a
microscopist is available, they are often oversubscribed and cannot spend long
enough examining each sample to give a confident diagnosis.

This situation has prompted an increasing interest in finding technological
solutions to carrying out the diagnosis automatically with computer vision
methods, taking advantage of existing equipment and compensating for the
shortage of human expertise. In particular, image processing and computer
vision techniques can be used to identify parasites in blood smear images
captured through a standard microscope. Given sufficient training data, the
algorithms used in other medical imaging problems or computer vision tasks
such as face detection can be applied to recognize plasmodia. Some studies
have looked further at classifying the species and life cycle stage of parasites.

Apart from the idea of using blood smear images captured directly from a
microscope, there is a great deal of attention currently on other forms of point
of care diagnosis for malaria. Some of these are reviewed in the next section,
and include methods based on fluorescence imaging or flow cytometry, for
example. While these methods may be promising in future, there is still value
in diagnosis based on image processing currently, for the following reasons:

� Image processing methods can be used when we do not wish to remove
human experts from the diagnostic process completely, but rather to
offer decision support. In this case, we might display to a technician (ei-
ther on site, or remotely) the regions in blood smear images which seem
most indicative of plasmodium, and allow the technician to make the
final judgment. This could improve the efficacy of technicians by help-
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ing to triage their attention, or make remote diagnosis over a network
connection more feasible.

� When mobile devices are used for imaging and processing, we can take
advantage of existing hardware. Both microscopes and camera phones
are common in most malaria-affected countries. Hence, the only new
hardware necessary to combine them is an adapter to mount the phone
onto the microscope eyepiece or trinocular tube, which is relatively in-
expensive. There have also been recent advances in low-cost microscopy
using simple optical components attached to mobile devices [33, 6].

� Several other tests can be carried out with the same images, for example
cell counts or detection of other hemoparasites. Malaria diagnosis might
be just one element of a suite of diagnostic software running on the same
system. In principle, any microscopic test could be automated with the
same imaging hardware given sufficient training examples.

The rest of the chapter is organized as follows. In the next sections we
review existing work on point of care diagnosis for malaria, and the stan-
dard practice for malaria diagnosis. We then describe a typical image capture
setup, including experiments with 3D-printed phone adapters. Next, we de-
scribe methodology for extracting statistical image features, and application
of learning algorithms to carry out malaria diagnosis as an object detection
problem. Finally, we provide some quantification of the accuracy of the system,
and conclude with a discussion of current issues and future directions.

8.2 Conventional microscopic diagnosis of malaria

The fundamental goal of malaria diagnosis is to demonstrate the presence of
plasmodium before antimalarial drugs are used. Presumptive diagnosis from
symptoms alone has poor accuracy and can lead to over-diagnosis of malaria,
with resultant poor management of non-malarial febrile illnesses and wastage
of antimalarial drugs [19]. Definitive diagnosis of malaria infection is still based
on finding malaria parasites microscopically in stained blood films.

In thin films the red blood cells are fixed so the morphology of the para-
sitized cells can be seen. Species identification can be made, based on the size
and shape of the various stages of the parasite and the presence of stippling
(i.e. bright red dots) and fimbriation (i.e. ragged ends). However, malaria
parasites may be missed on a thin blood film when there is a low para-
sitemia.Therefore, examination of a thick blood smear, which is 20–40 times
more sensitive than thin smears for screening of plasmodium parasites, with a
detection limit of 10–50 trophozoites/µL is recommended [28]. In this process,
the red blood cells are lysed and diagnosis is based on the appearance of the
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parasites which tend to be more compact and denser than in thin films. Since
the thick smear is approximately 6-20 times as thick as a single layer of red
blood cells, this results in a larger volume of blood being examined.

A group of dyes known as Romanowsky stains are a series of blue/red
stains where the blue (methylene blue) binds to acidic substances and the red
(eosin) binds to neutral or basic substances in cells. Examples of such stains
include Fields A and B, Giemsa, Leishman and Wrights stain. Developed in
1800s by a Russian physician, these stains have similar basic components but
differ from each other according to simple modifications.

While Leishman’s stain (1901) undoubtedly gives the best results in a
thin film, Giemsa stain (1902) has proved to be the best all-round stain for
the routine diagnosis of malaria. It has the disadvantage of being relatively
expensive, but this is outweighed by its stability over time and its consistent
staining quality over a wide range of temperatures. The detection threshold in
Giemsa-stained thick blood film has been estimated to be 4-20 parasites/µL
[20]. Under field conditions, a threshold of about 50-100 parasites/µL blood is
more realistic [16]. However, in remote settings with less skilled microscopists
and poor equipment, a still higher threshold is likely.

The method preferred for staining thick blood smears in countries such as
Uganda is Fields stain, particularly because it is more rapid than the alterna-
tives. This stain is made of two components:Fields A is a buffered solution of
azure dye and Fields B is a buffered solution of eosin.These stains are supplied
ready to use by the manufacturer, and have advantages of being inexpensive,
simple to use, economical and have short staining time compared to other
methods. However there are also disadvantages with Field’s stain, especially
in under-resourced health centres in which the stain might be used. Poor blood
film preparations often result in the generation of artifacts commonly mistaken
for malaria parasites, such as bacteria, fungi, stain precipitation, and dirt and
cell debris. These can frequently cause false positive readings [11].

8.2.1 Practical difficulties in under-resourced health facili-
ties

The procedure of staining with Field’s A and B involves dipping the slide
into the solution. This normally requires pouring the stains in couplin jars,
which ideally should have lids, and water between them. These solutions are
supposed to be prepared fresh each day for optimum potency, or kept tightly
closed and filtered every morning. However, in resource constrained settings—
under which the majority of health facilities in Uganda fall—these jars could
be kept for weeks, and the stains rarely filtered. Frequent opening of these
jars results in evaporation of methanol, which then results into precipitation
artifacts. Contamination can also result from stain or water carry-over from
one jar to the other (dilution). Bacterial contamination can originate from
frequent opening of the jars or introduced from dirty slides, and if not filtered
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regularly can result into false positive reporting as bacterial cells could be
confused with malaria parasites.

Another contributing factor to poor microscopy performance is excessive
workload, which is a problem when there is a shortage of staff with suffi-
cient expertise. Sensitivity is directly related to the time available to examine
blood films and therefore decreases when the number of slides exceeds the
workload capacity of the microscopist, and this becomes more pronounced if
the microscopist has responsibilities for diagnosing other diseases.

The time required to read an individual malaria slide depends on several
factors, including the quality of microscope and immersion oil used, the skill
of the microscopist, slide positivity rate (SPR) and parasite density. The time
taken to declare a slide positive or negative differs considerably. A strongly
positive thick film can be examined more quickly than a weak positive or
more still a negative film. Another significant factor is the additional time
required for species differentiation, where this is clinically important. Species
identification is best done on a thin smear, but in low parasite density is
extremely time-consuming.

During the malaria eradication era, the World Health Organization rec-
ommended that a single technician can satisfactorily read 60–75 slides per
day. More recently, this has been considered unrealistic as a standard since
the functions and roles of microscopists in malaria control are different today.
Based on the Ugandan situation, the Malaria Control Programme together
with Malaria Consortium have recommended 25-40 slides per day, each cov-
ering about 200 microscopic fields from a standard thick smear using x100
objective. This should take 5-10 minutes on average to declare a smear nega-
tive [4]. However, according to our personal experience, even after examining
20 consecutive slides, fatigue becomes an issue and concentration tends to
weaken.

Perhaps the most important constraint for microscopy-based diagnosis in
the developing world, however, is the frequent absence altogether of laboratory
technicians from health facilities in rural areas. In Uganda, with only 34%
of the laboratory staff positions occupied, the absence of this cadre of staff
has been associated with higher costs of diagnostics based on microscopy in
comparison with those based on RDTs [36, 5]. The absence of human resource
for health is a major problem in sub-Saharan Africa, and one which gets worse
in the lower health units which are commonly the first point of contact for
patients.

8.3 Alternative diagnosis methods

The absence of human resource for performing the diagnosis of malaria in these
setting is one of the reasons for the development of alternatives methods of di-
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agnosis. This includes the recent development of several rapid diagnostic tests
(RDTs) for malaria, methods for automating the microscopical examination
with image processing, and other forms of diagnosis. In this section we review
alternatives to the conventional diagnosis methods.

8.3.1 Rapid diagnostic tests

Rapid diagnostic tests (RDTs) for malaria have been a great success in reduc-
ing the disease burden following the change in policy by WHO [12, 35]. RDTs,
based on testing for antigens produced by the immune system in response to
plasmodium, have high sensitivity for parasite concentrations of over 500/µL.
For smaller concentrations the sensitivity of RDTs becomes too low to be
used reliably, however [36]. Test results are usually available in 5-20 minutes,
do not require capital investment, electricity, or extensive training for labo-
ratory staff, although individual tests are more expensive with RDTs than
microscopical analysis [5].

Apart from the issues of inadequate sensitivity for low parasite concentra-
tions, there are other concerns about the discriminative effectiveness of RDTs
in specific situations. These include frequent false positive results in areas of
low transmission [2] and false negatives for individuals with asymptomatic
infections or multiple organism infestations [14]. Overall, RDTs are successful
in a number of situations, but the gold standard for diagnosis for malaria re-
mains the microscope—especially in those instances such as treatment failures
or low parasitemia where RDTs will not work [1, 13].

8.3.2 Related work in computer vision diagnostics

A number of studies have looked at image processing and computer vision
methodology for automated diagnosis of malaria from blood smears. In vision
terms this is an object detection problem, and some previous work is reviewed
in [31]. There has also been work in comparing these methods with other
forms of diagnosis [3]. [24] uses neural networks with morphological features
to identify red blood cells and possible parasites present on a microscopic slide.
The results obtained with this technique were 85% recall and 81% precision
using a set of 350 images containing 950 objects. In [30] a distance weighted
k-nearest neighbor classifier was trained with features extracted by use of a
Bayesian pixel classifier which was used to mark the stained pixels. The results
achieved by this method were 74% recall and 88% precision.

Color space and morphological heuristics were employed to segment red
blood cells and parasites by using an optimal saturation threshold [15] using a
set of 55 images. Multi-class parasite identification, attempting to classify the
type and life cycle stage of detected parasites has also been attempted [32].

All the vision systems mentioned operate on images of thin blood films, a
single layer of blood cells with red blood cell matter preserved. Thick blood
film images, which are prepared in such a way that red blood cell matter is
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destroyed and DNA material is stained, are more commonly used in the de-
veloping world as they are more sensitive. This makes diagnosis possible even
with very low parasitaemia, although typing of parasites is difficult with this
type of sample as shape information is not as well preserved. Furthermore, the
samples used in these previous studies were prepared under ideal conditions,
with high quality slide preparation and imaging equipment. In the experiments
described here, we use thick film images collected under field conditions.

8.4 Blood smear image capture and annotation

In order to automate the process of parasite detection, we first consider two
different methods for capturing images of blood smears under a microscope:
using a dedicate microscope camera, or using the camera of a mobile device
such as a smartphone. For the latter method, we investigated the potential
of 3D printing for producing low-cost adapters with which to mount a phone
directly on the eyepiece of the microscope. The promise of this type of 3D
printing approach is that customized adapters could in principle be made on
demand for any combination of camera phone and microscope, as long as
the geometry of the phone and the eyepiece diameter of the microscope eye-
piece are known. Figure 8.1 (left) shows the design of our prototype adapter
for attaching a ZTE Blade low cost Android smartphone to a Brunel SP150
microscope. Combining the imaging and computation on a single device, par-
ticularly a device already widely available even in malaria-endemic regions,
would clearly make the system quite practical to deploy. Figure 8.1 (right)
shows the printed adapter on one eyepiece, and a Motic MC1000 microscope
camera on the other eyepiece.

Samples of the images taken from the camera phone and the dedicated
microscope camera are shown in Figure 8.2. The image from the camera phone
is clear, but has a wider field of view than the dedicated microscope camera.
A single parasite is about 20 pixels across in the Motic image, but only around
8 pixels across in the image taken with the phone camera. We concluded that
the phone imaging setup is a promising, low cost method for capturing blood
film images for diagnosis, but that more work is needed on building extra
magnification into such adapters in order to obtain a sufficient level of detail
on plasmodium objects. The experiments described in the following parts of
this chapter all use images from the Motic camera.

Sets of images were taken of thick blood smears with Field’s stain from
133 individuals, using 1000x magnification with an oil immersion objective
lens. After eliminating images which were out of focus, having motion arti-
facts from movement of the microscope stage during image capture, or were
hyperparasitemic to the extent that it would be impractical to confidently
label every parasite in the image, we were left with a set of 2703 images.
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FIGURE 8.1
3D-printable design for smartphone adapter (left). Printed phone adapter and
Motic camera mounted on microscope (right).

FIGURE 8.2
Image from camera-phone (left), and image from Motic camera (right).

8.4.1 Annotation

In order to train and test the automated diagnosis system, it was necessary
to annotate each of these images with the bounding boxes around each para-
site. Bounding boxes were annotated on the captured images using labelling
software developed for the PASCAL Visual Object Classes challenge [7]. A
team of four experienced laboratory technicians used this software to indicate
the position of every object they judged to be a parasite. Sample annotations
are shown in Figure 8.3 (left). In this way the coordinates of 50,255 parasites
were recorded within the set of captured images.
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FIGURE 8.3
Bounding boxes around parasites annotated on a training image (left). Sample
image patches close to the decision boundary, positive cases at the top and
negative cases at the bottom (right).

8.5 Automated diagnosis

We split up each image into overlapping patches, and assigning each patch
a label of 0 or 1, depending on whether the centre of a parasite bounding
box is within that patch. Each 1024×768 image was split into 475 overlapping
patches, each of size 50×50 pixels. Given this labelled set of image patches,
we can pose the plasmodium detection task as a classification problem. To
illustrate the nature of this problem, and its difficulties, we show examples
of image patches in Figure 8.3 (right). The patches in the upper section of
the Figure all have a positive label (i.e. they contain the centre of a parasite
bounding box as specified by one of the expert annotators). The lower patches
all have negative labels (i.e. they do not contain the centre of a bounding
box), but contain artifacts, platelets or other shapes which might appear to a
classifier to be close to the decision boundary.

The raw form of the pixel data in these image patches is not directly
very useful for classification. We instead require a representation which is
invariant with respect to rotation, translation and constant offsets in intensity.
We may also require scale invariance if the images are not collected with a fixed
magnification. Since the patches in the parasite recognition problem contain
plasmodium against a background of normal cell matter, it also helps in this
case to engineer features with some concept of an “object”. This is common
in biomedical imaging applications, where we wish to segment images into
objects such as organs, cells, and so on.

Feature engineering is therefore a significant step in the development of
the automated diagnosis system. We have two aims in this: firstly to find a
representation of the data which leads to good performance on the plasmodium
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detection task, and secondly to have a sufficiently general representation of the
shapes in blood smear images that other objects of interest—such as different
hemoparasites, or white blood cells—could also be effectively identified in
future with the same platform.

The plasmodium detection problem primarily concerns the shape of objects
in the input patches. In general color information can also be useful (e.g.
with Giemsa or Leishman stains), though it is not so informative using blood
films treated with Field’s stain. Hence the features we use for this task are
statistical representations of the shapes found in the image patches, and for all
feature extraction we first convert the color patches to grayscale. We use two
types of features: those derived from connected components, using concepts
from mathematical morphology, and those derived from calculating moments
of the patches thresholded at multiple levels. These two types of features
are explained in Sections 8.5.1 and 8.5.2 respectively. We then conclude the
automated diagnosis methodology by describing the classification process in
Section 8.5.3.

8.5.1 Connected component features

In this section we describe features based on regions, which are spatially con-
nected sets of pixels that have some property in common such as similar grey
level, and are used to define disjoint image segments. Regions, if properly de-
fined, should correspond to objects. However, proper definition of regions is
a difficult problem in image analysis. One approach to this problem, which
has been used extensively in medical imaging, is a class of operators called
connected filters [26, 10]. These are a family of morphological operators [9]
that are based on the notion of connectivity and operate by interacting with
connected components rather than individual pixels. Connectivity describes
the way pixels are grouped to form connected components or flat zones in gray
scale.

To calculate shape features for an image patch in this way, we first thresh-
olded the image at each gray level. Connectivity openings [23] were used to
calculate all the components in each thresholded image. These are known as
peak components and denoted as P k

h for gray level h and index k. This is
illustrated in Figure 8.4 for a 1D example, and Figure 8.5 for an example with
an image patch containing a parasite. The peak components were used to con-
struct a max tree [25], which is a data structure designed for morphological
image processing in order to efficiently compute features or attributes of the
connected components. The max tree makes it possible to compute a large
number of shape attributes for each of its nodes, and classification can then
be based on these computed properties.

We computed several common morphological features for the connected
components of every image patch, then used feature selection to narrow these
down to five features most informative for the parasite detection task. These
selected features are as follows:
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FIGURE 8.4
A 1-D signal f (left), and the corresponding peak components (right).

FIGURE 8.5
Sample grayscale patch containing a parasite (left), and connected peak
components—indicated as white regions—at different threshold levels (right).

� Perimeter

� Moment of Inertia

� Elongation: Inertia/Area2

� Jaggedness:
(
Area × Perimeter2

)
/
(
8π2 × Inertia

)
� Maximum λ: Maximum child gray level - current gray level

Our aim was to compute standardized feature vectors for each patch in an
image. Because the number of components on a single patch is variable, we
summarized the shape information by traversing the max tree and calculating
the percentile distribution of every attribute. For the five features above, we
calculated the 25th, 50th, 75th percentiles, and the minimum and maximum
values. Therefore we obtained a 25-dimensional feature vector for each image
patch.

8.5.2 Moment features

An additional set of features was obtained by thresholding each patch at five
different levels between the minimum and maximum pixel value. For each of
the binary images returned by the threshold operation, we calculated many
standard moment statistics [29] and used feature selection methods on training
data to find those which were most discriminative with respect to the patch
label. In this way, we selected the moment m00, the central moments µ11, µ20,
µ02 and Hu moments h0, h1, h2. These seven statistics, calculated for five
different thresholded version of the patch, therefore provided an additional 35
features for each patch. These features were appended to those calculated as
described in the previous section.
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FIGURE 8.6
Sample patches in test images, arranged by the probability assigned by the
classifier to each patch of its containing a parasite. The probability range of
each row is indicated on the left, with the top row being patches confidently
classified as positive cases, and the bottom row being confidently classified as
negative cases.

8.5.3 Classification

The Extremely Randomized Trees classifier [8] was used to learn a mapping
between features and patch labels. This is a type of ensemble method, in
which many decision trees are learned by selecting thresholds at random and
retaining the trees which give good classification performance. Its advantages
for this application, as well as good discriminative performance, are that it is
fast and memory-efficient to evaluate at test time. This is useful for situations
where classification is to be carried out on a mobile device with limited com-
putational resources. An ensemble of 250 trees, with a maximum tree depth
of 5 was used.

8.6 Evaluation

The classifier was trained on 75% of the labeled data (2027 images, containing
37550 patches annotated as containing parasites), and tested on the remaining
25% (676 images, containing 16312 patches annotated as containing parasites).

The receiver operating characteristic (ROC) curve is shown in Figure 8.7
(left), and the area under the curve (AUC) of 0.97 indicates that the classifier
is effective at distinguishing positive and negative patches. Note that this
is the performance at determining whether individual image patches contain
parasites, not the performance at classifying all the image data from a single
patient. If there is one or more positive patches within the set of images from
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FIGURE 8.7
Receiver Operating Characteristics and Precision-Recall curves for test data.

an individual sample, then that sample is considered infected. We cannot give
per-patient sensitivity and specificity results here, as nearly all of the blood
smear images in our experiments were from malaria-infected individuals.

The precision-recall curve, shown in Figure 8.7 (right) shows the differ-
ent trade-offs possible between increasing sensitivity and decreasing the false
alarm rate. Note that this compares favorably to the performance of related
methods for thin blood smear analysis in Section 8.3.2, given that thick blood
smears are an order of magnitude more sensitive than thin blood smears.
Therefore, if we choose a detection threshold with gives us precision of 90%,
the corresponding recall of around 20% is still higher than any method using
thin blood smears would be able to attain after analyzing the same number
of fields of view.

From Figure 8.7 (right) we can see that if the system were to be used for
entirely automated diagnosis, in order to have a false alarm rate below one in
ten, the recall would be around one fifth of what an experienced laboratory
technician would be able to achieve; that is, the minimum detectable concen-
tration of parasites in the blood would be around five times higher for the
automated system than for the human expert. This is better than a purely
symptomatic diagnosis, but clearly has shortcomings in terms of sensitivity.
An alternative way to use such a system, therefore, would be as a decision-
making aid to a technician. The aim in this context is to process the images
from the microscope in order to focus the technician’s attention on only the
objects within those images that most resemble plasmodium. For this, a dif-
ferent threshold with greater sensitivity would be appropriate. For example,
we might require recall of 90%, giving a corresponding precision of 37%. That
is, we would expect the system to detect nine of every ten parasites appearing
in the images, but 63% of detections would be false alarms. This would be
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FIGURE 8.8
Sample detection output on part of a test image. Blue squares indicate patches
which were correctly classified as containing parasites (where the classifier
gave a probability above a threshold of 0.8, and the patch label was positive),
red squares indicate false positives (classifier probability above threshold, but
label negative) and white squares indicate false negatives (classifier probability
below threshold, but label positive). By adjusting the classification threshold,
different trade-offs are found between false positives and false negatives.

discriminative enough to considerably improve the throughput of a technician,
who would only have to assess highlighted regions, rather than entire images.

The system was implemented in Python with scikit-learn1 and opencv2.
Feature extraction code was implemented in C for computational efficiency.
Video of a netbook deployment operating in a clinical setting can be seen
online3.

1http://scikit-learn.org
2http://opencv.org
3http://aidevmakerere.blogspot.com/2012/08/live-testing-of-computer-vision

-malaria.html



Automated Blood Smear Analysis for Mobile Malaria Diagnosis 15

8.7 Discussion

In this chapter we have given a methodology for automated diagnosis of
malaria from blood smear images, including image capture, feature extraction
and classification. The accuracy of the system currently makes it practical as
decision making aid for laboratory technicians, by triaging attention to the
parts of images most indicative of plasmodium. For fully automated diagno-
sis, in order to have a false alarm rate below 10%, the sensitivity would be
around 20% of what a trained microscopists would be able to achieve with the
same images. This is still likely to be more sensitive than an analysis based
on thin blood smears, which has been the focus of most previous work on
vision-based automated malaria diagnosis, and certainly more sensitive than
rapid diagnostic tests.

A platform for the automation of diagnosis from blood smear images pro-
vides several interesting and useful directions for future work. A location-aware
mobile device could look up its location on a risk map, in order to set a prior
for diagnosis (discussed further in [17]). Automated diagnosis also provides a
significant opportunity for data collection; if test results are stored centrally,
then spatial patterns of malaria incidence could be inferred. Furthermore,
the feature extraction and classification framework we have described is suf-
ficiently general that a whole suite of diagnostic tests—e.g. for tuberculosis,
worm infestations, or hemoparasites other than plasmodium—could feasibly
be implemented using the same framework.
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