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The coordination of humanitarian relief, e.g. in a
natural disaster or a conflict situation, is often
complicated by a scarcity of data to inform planning.
Remote sensing imagery, from satellites or drones,
can give important insights into conditions on
the ground, including in areas which are difficult
to access. Applications include situation awareness
after natural disasters, structural damage assessment
in conflict, monitoring human rights violations or
population estimation in settlements. We review
machine learning approaches for automating these
problems, and discuss their potential and limitations.
We also provide a case study of experiments using
deep learning methods to count the numbers of
structures in multiple refugee settlements in Africa
and the Middle East. We find that while high
levels of accuracy are possible, there is considerable
variation in the characteristics of imagery collected
from different sensors and regions. In this, as in
the other applications discussed in the paper, critical
inferences must be made from a relatively small
amount of pixel data. We therefore consider that using
machine learning systems as an augmentation of
human analysts is a reasonable strategy to transition
from current fully manual operational pipelines to
ones which are both more efficient and have the
necessary levels of quality control.
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1. Introduction
Humanitarian relief is required in response to many types of crises, including both natural and
man-made disasters. It is typically a short-term intervention aimed at the immediate saving of
lives and reduction of suffering until longer term provisions can be made. For this response to be
effective, reliable and comprehensive information is critical, as early as possible, about the effects
of the crisis: how many people have been affected, and (as the response gets underway) how
many of those have actually received relief, out of the total number targeted for assistance.

In a crisis situation, collecting this information is often difficult. For example, in a natural
disaster such as a flood or earthquake, roads may become impassable, or in man-made
emergencies there may be conflict; furthermore the areas affected might be large, making it
impractical to survey the situation thoroughly from the ground. In some cases, the numbers
of affected individuals might be deduced essentially through a series of informed guesses,
particularly during the initial hours or days after the onset of an emergency, where the only
available information could be anecdotal reports from eyewitnesses. Because of this, remote
sensing data—particularly from satellites—is useful. Satellites can be tasked to collect images
of the affected area, and it can be possible to obtain high resolution imagery (50cm resolution or
less) within a matter of days, depending on certain factors including cloud cover.

With this imagery, various analysis tasks can be carried out depending on the crisis. In
situations involving refugees or internally displaced people (IDPs), the numbers of people in
settlements (either planned or informal) can be estimated from the numbers of different types of
structures. Damage assessment can be done e.g. by counting and mapping numbers of destroyed
buildings. Other humanitarian analysis tasks may not be directly related to the provision of relief
– for example conflict documentation for naming and shaming, or collection of evidence for
litigation. These procedures generally involve skilled human analysts visually interpreting the
imagery. Increasing the degree of automation would have potential benefits in terms of providing
results more quickly, and in being able to take advantage of the increasing availability of high
resolution satellite imagery to provide more frequent updates. However, routine deployment of
machine learning based systems for these purposes has so far been elusive. Algorithmic analysis
is currently done for some types of analysis, though generally on lower resolution data (e.g. from
Landsat or Sentinel sensors) in fire detection, standing water analysis or land cover mapping, for
instance.

The structure of the rest of the paper is as follows. In Section 2 we briefly review applications of
machine learning for remote sensing data in general, and in Section 3 discuss the principal existing
work specifically on humanitarian applications. In Section 4 we give experimental details of a case
study on counting structures in refugee settlements, then discuss and conclude in Sections 5 and
6 respectively.

2. Machine Learning and Remote Sensing Data
Remote Sensing Data

Advances in aerospace engineering and remote sensing technologies have resulted in an
increasingly diverse array of earth observation systems; these capturing unprecedented quantities
of imagery, measuring a range of geophysical parameters and operating in a range of satellite
orbits. The distribution of the data captured by these is managed by a number of satellite
operators and data providers. The application and suitability of remote sensing imagery in
humanitarian efforts depends on satellites’ spatial resolution, revisit capability, spectral resolution
and radiometric resolution.

There is no universal consensus on how to categorise resolution in remote sensing, though
for the purposes of this article we define high resolution as 1m or less, medium resolution as
1-10m and low resolution as more than 10m. We note that these are non-standard categories:
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for example, in the Copernicus data catalogue1, the threshold for “high resolution” is 30m. We
use these divisions here because of the scope of machine learning applications possible within
each category. With sub-meter resolution, it is generally possible to identify commonplace objects
of interest such as buildings and vehicles. People can be seen in drone imagery, where resolution
can be below 10cm, but are not generally visible even in high resolution satellite images (although
crowds can be visible, and shadows cast by individual persons may be visible depending on
conditions). For resolutions of a few meters, all the above types of objects are more difficult to
identify, and therefore methods such as object detection are more limited in their applications, and
superresolution algorithms can be applicable. For low resolution data, machine learning methods
are even more restricted, for example to land cover mapping or macro-scale analysis e.g. of climate
or ecology.

High resolution imagery sources include Ikonos-2 (0.8m panchromatic or 3.2m RGBiR),
Orbview-3, IRS-P6, EROS A&B (0.7m), QuickBird (0.61m panchromatic or 2.44m RGBiR), Pleiades
(0.5m panchromatic or 2m multispectral), GEOEYE-1 (0.46m panchromatic and 1.84 multispectral
(RGB and NiR) resolution) and Kompsat (0.7m). Moderate or low resolution imagery includes
imagery captured by satellite sensors such as Planet (3-5m), SPOT (1.5-2.5m), Sentinel-1 (5m in
Stripmap mode), Sentinel-2 (10-60m with 13 spectral bands), AVHRR/3 (1090m), Geostationary
Operational Environmental Satellite (GOES) (1000m), MODIS (250-1000m) Landsat (15-120m),
and ASTER (15-90m). Very High Spatial Resolution (VHSR) imagery sources include WorldView
(0.3-0.5m).

The number of spectral bands provided by each sensor is significant for the types of
applications which are possible. For example, the multispectral WorldView sensors have enabled
land use and land cover mapping to be conducted at an unprecedented level of spatial detail.
Image processing techniques including RGB-pansharpening and multispectral-pansharpening
have also broadened applications.

Another issue with regards to machine learning application is the consistency and calibration
of different sensors. The sources that we refer to above as “low resolution” in the list above are all
sensors which image the entire globe at regular intervals, and where the corresponding pixels
at different time frames are produced by the same measurement process; therefore, machine
learning models can be transposed across space and time on this data relatively easily. The “high
resolution” sources above are limited by capacity, as satellites such as WorldView and Pleiades are
unable to transmit all of the imagery they capture back to Earth. They are operated on a tasking
basis, where images for certain areas are requested, and therefore the available data from these
sources is a patchwork of images at different places and times. For some areas, e.g. remote parts
of developing countries, the most recent high-resolution imagery may be several years old, so
that tasking new imagery is necessary if such data is needed, and historical analyses are limited.
In addition, the cameras on the satellites are rotated in order to capture the areas of interest, so
that the angle of incidence varies and even images of the same place taken by the same satellite at
different times may not be directly comparable. Hence, in machine learning terms, high resolution
imagery provides greater scope in terms of recognising and segmenting objects on the ground, but
also makes it more necessary to consider dataset shift and model generalisation issues.

Amongst all sources, satellite location revisit cycles vary widely. For example, while the GOES
system can provide continuous and timely environmental and atmospheric observations over the
Earth’s surface, MODIS has a revisit cycle of 1-2 days, Landsat-7 has a revisit cycle of 16 days,
and Sentinel-1 six days. As the operational use of satellite systems can be hindered due to limited
revisit cycles, complementary systems such as constellations of CubeSats have been suggested as
a means of overcoming these limitations (Santilli et al., 2018).
Machine Learning with Remote Sensing Data

Machine learning methods have been in routine use for the analysis of remote sensing data
for some time. One of the earliest applications was land cover classification with multi-spectral
data (e.g. Landsat), often using a random forests or support vector machines, and this has been

1https://spacedata.copernicus.eu/documents/12833/14545/DAP_Release_Phase_2_1.0_final
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standard practice for around two decades. The application of machine learning methods for the
efficient detection and classification of remote sensing imagery have been reviewed previously
and have focused on neural networks, support vector machines, decision trees and random
forests, and k-nearest neighbours (Maxwell et al., 2018; Pagot and Pesaresi, 2008; Mountrakis
et al., 2011; Belgiu and Dragut, 2016).

Most machine learning approaches to image analysis currently are variations of deep learning
methods, which have substantially improved the state of the art in various application domains,
and for which remote sensing applications are now emerging. Whereas previously it was
normal to split up an analysis task into separate steps (for example selection or hand-coding
of features, followed by application of a machine learning model, followed by post-processing),
one important aspect of deep learning has been increased “end-to-end learning”. In this type of
setup, the model simultaneously learns a feature representation, intermediate processing steps,
and tunes parameters for generating the final output. This requires large training datasets and
computational power, but often results in strikingly better performance than was possible with
previous methods. Specific discussion about deep learning methods in remote sensing can be
found in (Zhu et al., 2017) and (Zhang et al., 2016).

Deep learning autoencoders are a type of network structure of particular significance in remote
sensing. Autoencoders for images are models which have the ability to map each pixel in an image
to a new value. Thus they are useful for segmentation tasks such as land cover mapping, in which
we want to categorise each pixel as belonging to the class of forest, water, urban area, and so on.

Object detection methods are another area of deep learning which has an important impact in
terms of remote sensing applications. Whereas autoencoders are generally used for mapping the
spatial extent of “stuff” (such as water, road surface, or crop land), object detection methods are
used for mapping the location of “things” (such as cars or buildings). Object detection methods
generally output a bounding box – i.e. the top, bottom, leftmost and rightmost limits – of each
object detected in an image, for example with region-proposal convolutional neural networks
(RCNNs), of which Faster-RCNN is a common method (Ren et al., 2015). Other methods are able
to do instance segmentation, in which for each detected object the model outputs which pixels in
the image are assigned to that object. We carry out such experiments below with the Mask RCNN
model (He et al., 2018).

Deep learning applications to satellite imagery include the use of convolutional neural
networks for high-precision land cover mapping (Minetto et al., 2018), and scene classification
(Zou et al., 2015). One issue with deep learning models is that they are rarely practical to train
from scratch for a new problem, unless there is a training dataset of significant size and the
corresponding computational power available to train a network to convergence. Instead it is
usually necessary to take a network pre-trained on another dataset and use transfer learning to
adapt it to the new problem. An example of transfer between remote sensing scene classification
problems is given in (Hu et al., 2015).

3. Humanitarian Applications
Remote sensing technologies are increasingly being used to monitor, mitigate and guide
humanitarian responses to conflict, human rights violations, and man made or natural disasters
(Van de Walle 2009; UNOSAT-UNITAR 2015, 2018a, 2018b). This includes the monitoring and
documentation of large-scale displacement and destruction caused by conflicts and the early
warning of imminent hostilities or border conflicts (UNOSAT 2016).

The use of remote-sensing technology to study violent conflict and human rights has increased
considerably over the last decade, and is especially valuable in difficult-to-reach or dangerous
conflict zones where field observations are sparse or non-existent (Witmer 2015).

Fire detection products derived from satellite imagery may be used as an input into early
warning systems to flag potential human rights violations or humanitarian emergencies. For
instance, Moderate Resolution Imaging Spectroradiometer (MODIS) imagery has been used to
identify burning campaigns in human settlements in Darfur in Sudan during periods of ethnic
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violence (Bromley 2010; Marx and Loboda 2013; Prins 2008). In Kenya, the United Nations used
satellite imagery to locate areas where violence had potentially occurred (Anderson 2008).

Night-time lights, as measured using satellite imagery, can be used for monitoring unfolding
humanitarian crises (Li et al., 2014; Witmer and O’Loughlin 2011). Using satellite images acquired
from the Defense Meteorological Satellite Programme’s (DMPS) Operational Linescan System
(OLS), Li et al. (2014) investigated the spatial and temporal patterns of night-time light in Syria,
its international border and surrounding regions. They also observed a moderate correlation
(R2=0.52) between night-time light loss and numbers of IDPs in districts. In the Caucasus region
of Russia and Georgia, fluctuations in the night-time lights of cities were evaluated from 1992 to
2009, to detect conflict-related events such as large fires and large-scale movements of populations
(Witmer and O’Loughlin 2011). A review of research and applications using remote sensing in
conflict and human rights scenarios can be found in Marx and Goward (2013), and Witmer (2015).

Remote sensing has been used widely to map the effects of conflict, for example determining
structural damage to buildings and critical facilities; and damage to transportation networks
which in turn may affect humanitarian access (Pagot and Pesaresi 2008; Knoth and Pebesma
2017). For example, high resolution satellite imagery has been used to rapidly assess damage
to agriculture in the Gaza strip (UNOSAT-UNITAR 2015), impact craters, debris and damaged
structures in Eastern Ghouta in Syria (UNOSAT-UNITAR 2018a).

Images acquired using remote sensing technologies have been employed for monitoring and
guiding humanitarian responses to natural disasters including floods, earthquakes, volcanoes,
tropical cyclones and landslides. For example, in response to tropical cyclone GITA-18 which
affected the Tongatapu Island in Tonga, building damage density was assessed using Pleiades and
WorldView-2 satellite imagery (UNOSAT-UNITAR 2018c). Cooner et al., (2016) examined using
high resolution mulitspectral and panchromatic remote sensing data to detect urban damage
following the earthquake event near Port-au-Prince in Haiti in 2010. In this study, Cooner et
al., (2016) examined machine learning algorithms including various neural network architectures
and random forests to detect damage caused by the earthquake. Complementary systems have
been proposed for monitoring areas being affected by natural disasters, such as constellations
of nanosatellites or CubeSats (Santilli et al., 2018). In this study, CubeSat constellations are
proposed as a way of overcoming revisit time limits of VHSR satellite systems, which reduce
their operational use for the management of disasters.

The number of refugees and internally displaced persons (IDPs) is rapidly increasing, due to
conflict situations, man made or natural disasters, and other crises (UNHCR 2017). According to
the United Nations High Commissioner for Refugees (UNHCR), there were approximately 65.6
million forcibly displaced people at the end of 2016, including 40.3 million internally displaced
people, 22.5 million refugees and 2.8 million asylum seekers (UNHCR 2017).

IDPs who are not considered urban IDPs (Taubenbock et al., 2018), usually reside in self-
settled or planned settlements, where essential facilities may be provided by national or
international humanitarian relief organisations (UNHCR 2017). As such, accurately estimating
refugee occupancy rates in settlements is essential for planning and managing efficient relief
operations, and enhancing logistical support for allocating survival contingencies. Refugee
population numbers can be inferred from the number and size of structures within refugee
settlements including tents and improvised shelters (Giada et al., 2003). The immense size and
complexity of refugee settlements, the potential number of structures and the different types, are
challenges when producing accurate estimates. On-the-ground surveys of settlements including
structures can be labour intensive, time-consuming, costly and dangerous. However, these in situ
measurements offer advantages in terms of assessing whether structures are occupied or not.

With the continuous emergence of satellite sensors providing data of increasing spatial and
temporal resolution, the role of remote sensing-based applications has become increasingly
important for supporting humanitarian relief operations, especially in remote or difficult to access
areas (Kranz et al., 2010; Kuffer et al., 2016a). Remote sensing including high-resolution satellite
imagery has been used to provide evidence of new refugee settlements (UNITAR 2011), and to
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develop detailed maps of settlements by detecting and classifying infrastructure and structures
within these (Wang et al., 2015; Aravena Pelizari et al., 2018).

Current practice focused on detecting and classifying structures in settlements relies on the
manual analysis of remote-sensing data, requiring the identification and interpretation of high
resolution satellite imagery by trained analysts (Bjørgo, 2000; Giada et al., 2003; Checchi et al.,
2013; Spröhnle et al., 2014). Although highly accurate, this work is time consuming and is labour
intensive, which may limit it’s applicability in response to crises situations, or in large areas that
require regular monitoring over long periods of time. Decentralised approaches, for example,
crowd-sourcing or distributing the manual analyses of satellite imagery among several analysts,
have been used to improve the scale and timeliness of these tasks. They can also create additional
management and quality control challenges, though.

Other more efficient automatic or semi-automated methods including machine learning are
showing promise in improving the efficiency of analyst workflows (e.g. Giada et al., 2003; Lang
et al., 2010; Kemper et al., 2011; Wang et al., 2015; Spröhnle et al., 2014, 2017). In terms of
computer-assisted building detection, several case studies have been conducted, included pixel-
based classification (e.g. Giada et al., 2003), object based classification rule-sets (e.g. Lang et al.,
2010; Spröhnle et al., 2014, 2017) and approaches based on mathematical morphology methods
incorporating morphology thresholds (e.g. Giada et al., 2003; Kemper et al., 2011; Heinzel
and Kemper, 2014; Wang et al., 2015). However automating the detection and classification of
structures using satellite imagery, with sufficient accuracy to be practical, is still an open problem.
Public data science challenges in humanitarian remote sensing

In recent years, numerous challenges have been launched among the global data science
community, the object of these being to crowd-source the development of machine learning
techniques for automating the analysis of remote sensing imagery, with some of them in particular
in the context of humanitarian or sustainable development efforts.

The theme of the DIUx xView 2018 Detection Challenge was to detect emerging natural
disasters2. The DeepGlobe CVPR 2018-Satellite Challenge focused on detecting roads, buildings
and land cover 3, while a DigitalGlobe challenge focused generally on the creation of accurate
maps for potential use in future disaster response situations4. A recent challenge set by the
Defence Science and Technology Laboratory (Dstl) requested competitors to develop machine
learning methods to automatically detect and label significant features such as waterways,
buildings, and vehicles using multi-spectral satellite imagery5, for which the winning entries
were all autoencoder models. The Crowd AI mapping challenge 6 is aimed at the detection of
buildings, for use in humanitarian response in areas which are otherwise not mapped in detail.

Other crowd-sourced challenges have offered remote sensing data for monitoring adverse
anthropogenic impacts on the Amazon rainforest, including deforestation, biodiversity losses and
habitat losses7. The Data for Climate Action Challenge offered satellite imagery (3-5 m resolution)
as part of a broader pool of data resources to research insights and solutions for climate change
mitigation and adaptation, and sustainable development efforts8. Another challenge offered very
high resolution imagery (<10cm) from the UAVs for Disaster Resilience Program to accelerate
and improve humanitarian and development efforts of the South Pacific Island9. The objective
of this challenge was to develop machine learning classifiers to automate the analyses of the
imagery, including developing baseline maps and conducting damage assessment. Examples of
campaigns aiming to crowdsource the analysis of satellite imagery during crises include Amnesty
International’s Decode Darfur10 and Decode the Difference11 projects.

2https://xviewdataset.org
3https://deepglobe.org
4https://blog.digitalglobe.com/developers/the-spacenet-challenge-round-2-has-launched
5https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
6https://www.crowdai.org/challenges/mapping-challenge
7https://www.planet.com/pulse/forest-recognition-planet-launches-kaggle-competition
8https://www.dataforclimateaction.org
9https://werobotics.org/blog/2018/01/10/open-ai-challenge
10https://decoders.amnesty.org/projects/decode-darfur
11https://decoders.amnesty.org/projects/decode-the-difference
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Doro, South Sudan Dalakaleri, Nigeria Juba, South Sudan
c©2018 CNES, Airbus c©2018 DigitalGlobe c©2018 DigitalGlobe

Figure 1. Examples of satellite imagery of refugee/IDP settlements in which dwelling structures are visible.

Figure 2. Examples of structure detections in Doro settlement. Left: ground truth locations of structures; centre: detected

structure polygons with adapted network; right: detected structure polygons with basenet. Numbers in white denote

detection confidences. Imagery c©2018 DigitalGlobe.

4. Case Study: Structure Counting in Refugee Settlements
As discussed above, counting the numbers of different types of structures in a refugee or IDP
settlement is a common analysis task. In practice this is currently routinely done by human expert
analysts, though the repetitive nature of this task makes it a natural candidate for automation. A
single settlement may have tens of thousands of structures, and identifying them from imagery
is a task which can take an experienced analyst some days, with quality control checks by a
second analyst adding further time. We show examples of structures in a variety of refugee/IDP
settlements mapped by UNOSAT in Figure 1.

As an object detection problem, there are three main difficulties in practice. First, there is a
high degree of variation between different settlements, making it difficult to train a model on
one settlement and have it generalise well to others. This variation can be due to the settlements
being in regions with different terrain (e.g. desert or savannah), with different types of structures
(e.g. tents, semi-permanent structures, or improvised shelters made of any materials to hand), or
because imagery is collected by different sensors, in different weather conditions or time of day.

Second, the objects being detected are small and sometimes clustered close together. An
improvised shelter three meters across manifests in 50cm resolution imagery as a blob six
pixels across. Such shelters may be made from natural materials to hand in the area, making
them appear similar to the rest of the terrain. Distinguishing such structures from other objects
(including rocks, bushes, small uninhabitated structures and so on) can be a matter of judgement
requiring domain knowledge and reasoning about the context—which, despite recent advances
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Figure 3. Detected structure locations across the extent of HTC settlement, compared to actual structure locations.

in object detection with deep learning algorithms, is often difficult even for current state-of-the-art
methods.

Third, for this task a high degree of accuracy is needed. Because the results of the analysis are
used to inform critical decisions about the resources needed to maintain a settlement, current
quality control procedures are rigorous. Even if we view the model outputs as not the final
product of themselves, but as sets of candidate structure detections which could speed up the
work of an analyst, unless precision and recall are high enough it can take more work for the
analyst to correct an incomplete set of detections than to start from scratch. False detections are
more of a problem than missed detections, since identifying them and then cleaning them up
(within an interface such as ArcGIS) is a lengthier process.

(a) Data
The data used in this case study was annotated high resolution imagery from thirteen
refugee/IDP settlements, listed in Table 1. These images were in some cases composites of
separate images collected by different satellites and/or at different times, in the cases that there
was no image available covering the entire settlement at once. Three bands were used where
possible, though for some settlements only a panchromatic channel was available. Accompanying
these images were longitude/latitude point locations of structures within those settlements,
identified by experienced analysts with quality control checks done by a secondary analyst. The
points data for most of the settlements we analysed in this study, as well as maps giving more
context for the settlements, is publically available online12.

The images were split into 300x300 pixel tiles, and in order to train segmentation models we
manually traced out polygons corresponding to each structure, for a total of 87,137 structures.
Preprocessing code was written to augment this data for use while training, varying the
brightness and scale, and randomly rotating and flipping the tiles. This augmentation step was an
important stage of data preparation since in contrast to general computer vision problems, here
we have data from a relatively small number of contexts; tiles look relatively similar within each
settlement, increasing the risk of overfitting.

12http://www.unitar.org/unosat/maps, and
https://data.humdata.org/organization/un-operational-satellite-appplications-programme-unosat.
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Settlement Country Structures Area (km2) Image bands

Ajuong South Sudan 13,395 18.2 1
Doro 1 South Sudan 16,463 8.0 3
Doro 2 South Sudan 12,819 8.0 3
Ganyel South Sudan 3,415 29.3 3
HTC Iraq 4,253 2.1 1
Juba South Sudan 11,096 0.8 3
K-18 Iraq 1,247 0.5 1
Khaldiyah Iraq 3,844 1.5 1
Muna Nigeria 2,822 0.7 3
Ngala Nigeria 4,488 1.3 3
Nyal South Sudan 5,249 54.0 3
Yida South Sudan 17,064 26.9 3
Wau South Sudan 5,177 0.13 3

Table 1. Refugee/IDP settlements analysed in these experiments. Doro 1 and Doro 2 refer to the same location at different

times (analysis was carried out for snapshots in 2014 and 2017 respectively).

(b) Model
To carry out object detection we use the Mask-RCNN model (He et al., 2018), which has shown
good performance on detection and segmentation problems in other domains. This model is
constructed to simultaneously predict the bounding boxes of objects in an input image, the class
of each of those objects, and a pixel segmentation mask. The ability to provide pixel segmentations
is a particular attraction in this application, as it allows computations about the total roof area of
structures in a settlement.

The structure of the Mask-RCNN is that an input layer is first connected to a feature extraction
stage, typically using a different pre-trained network. We use ResNet101 (He et al., 2016)
pretrained on ImageNet and with the head layers removed. Connected to the upper feature
extraction layers, there are three output sub-networks, for object bounding boxes, classes and
segmentation masks respectively. Bounding boxes are identified by associating objects with anchor
boxes, which are a set of overlapping rectangular regions in the image with varying scale and
aspect ratio, and then outputting offsets from the anchor box. Pixel segmentations are predicted
in the form of a fixed-size grid (we use 28x28) aligned over the bounding box. Further details of
the Mask-RCNN model structure can be found in (He et al., 2018). We used a modified version of
an open source implementation13.

(c) Experiments
We carried out two sets of experiments with this model and data. The first was to test the extent
to which structures in a settlement can be detected and enumerated by a model trained only
with images from other settlements. This corresponds to the situation that imagery for a new
refugee settlement is available, and we require an immediate count using a pre-trained model
(trained in the past on other refugee settlements). We refer to models trained in this way as base
nets for each settlement; the base net for some settlement is trained with all available data from
other settlements. The second set of experiments looked at the change in performance when a
small amount of training data from the target settlement is available, so that we can carry out
transfer learning to improve the fit of the base net to the specific settlement that needs to be
assessed. This would correspond to the case that a new settlement is to be analysed, but that
there is a little time available to provide locations of some reference structures and update the
13https://github.com/facebookresearch/Detectron
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Figure 4. Precision-recall curves for basenets (tested on entire settlement) and models augmented with 50% of settlement

data (tested on remaining 50%).
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Figure 5. Detail of precision-recall curves showing changes when varying levels of adaptation data are available for

specific settlements.

model, in order to approve accuracy. In these experiments, we used different proportions of the
area of the test settlement as adaptation data. Adaptation data was randomly selected from the
settlement, though we note that more effective strategies may be possible, for example ensuring
that there is adaptation data with a balanced selection of the different types of structures visible
in the settlement. For a particular adaptation data set, we evaluate on the remainder of the area
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of the settlement. Training of networks took 2-3 hours on a machine with 4 GPUs, whereas each
adaptation phase took approximately 20 minutes of training on a single GPU. Detection using a
trained model on a single GPU took around 400ms per 300x300 tile, or approximately 18 seconds
per square kilometre of imagery (at 40-50cm resolution). This is already fast enough for practical
application, and could likely be considerably speeded up further with model compression.

Results are shown in Fig. 4, with precision and recall calculated for each settlement with the
basenet and the adapted network using from 10% to 50% of the true structures for training. We
evaluate precision and recall by considering any detected bounding box that coincides with a
true bounding box with intersection over union (IoU) greater than 0.25 as a true positive. Average
precision (AP) figures are given, which are the areas under these curves. In general the accuracy
increases when adaptation data is available, as we would expect; though the extent to which this
is true depends on how unique each settlement was with respect to the other settlements used
for training each network. We also note that the lowest performance was for the settlements in
which the density of structures was very high. The two settlements with significantly lower AP
than the others, Juba (pictured in Fig. 1 and Wau, have on average 17,497 structures per km2.
The best-scoring two settlements for the adapted models were K18 and Khaldiyah, with average
2,545 structures per km2. The model has trouble distinguishing individual structures when they
are dense and even adjoining each other. Interestingly, these two best-scoring settlements had
only greyscale (panchromatic) imagery, suggesting that the characteristics of the settlement are a
much more important factor for accuracy of structure detection than the availability of multi-band
colour images.

The extent to which adaptation data helped detection accuracy is show for sample settlements
in Fig. 5, where we zoom in on the high-precision, high-recall area of each curve and show the
different between the basenet and each of the adapted nets. For some settlements, adaptation data
gives a strong improvement; other less so, and sometimes with accuracy in fact decreasing. Note
that for each quantity of adaptation data, the test set changes each time (since we only evaluate
on parts of the settlement which were not used for adaptation training). Hence the performance
is not guaranteed to increase with increasing adaptation data.

Figure 2 illustrates these results by showing detections for one sample tile in Doro settlement.
The basenet is unable to detect several of the structures, because there are structures with
appearances particular to this settlement. With a small amount of adaptation data, these false
negatives are corrected. Figure 3 shows detections across the extent of an entire settlement,
compared to ground truth locations. Although some false positives are evident, the overall
structure of the settlement is clearly detected. Post-processing to remove outliers is likely to
improve results further.

5. Discussion
In this paper, we reviewed remote sensing technologies and machine learning methods for
guiding humanitarian responses to conflict, human rights violations, and man made or natural
disasters. We also reviewed previous work in automating the development of detailed maps
of refugee settlements for estimating their populations. We provided details of a case study in
which we applied deep learning methods to detect structures on multiple refugee settlements in
a number of locations in Africa and the Middle East.

In our analyses, we demonstrated that it is possible to detect a large proportion of structures
within the settlements studied. However, there is still considerable variation in the characteristics
of imagery collected from different satellite sensors, geographical regions and settlements types
and this was reflected in our results of our study. As such, this necessitated a semi-automated,
interactive learning approach in order to reach usable levels of accuracy when translating
generally trained models to specific locations. In a leave-one-out training and testing strategy
for a base network, the accuracy varies considerably, and is generally best for settlements which
have similar characteristics to those in the training data, and for those where the structures are
not densely packed (in which case the segmentation of distinct structures is a difficulty). The
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Figure 6. Schematic of the assisted mapping process with basenets and adapted nets. At each iteration, a human expert

corrects some proportion of the latest output, which is then used for re-training the adapted net to improve accuracy.

adapted results are significantly closer to having practicable accuracy, as we might expect. Also
as we would expect, the improvement from adaptation data varies according to how unusual the
test settlement is compared to the training data with which the basenet was trained with.

As the detection of structures is typically conducted through the manual analyses and visual
interpretation of satellite imagery, there is considerable potential for automatic analyses to
augment human analyses tasks, therefore reducing the amount of work needed to provide an
accurate assessment of the images in practice (Knoth et al., 2018; Hu et al., 2016). However, there
are still multiple challenges to be addressed when incorporating such methods into practical
work-flows. Fig. 6 shows a schematic representation of how we envisage an assisted mapping
process using basenets and adaptive nets. At each iteration stage, a human analyst would provide
corrections to a certain proportion of the most recent output. This corrected information is then
used as extra training data to further adapt the network. After some number of iterations, when
the analyst is satisfied that the accuracy is at an acceptable level, the latest output is used as the
final structure mapping.

A number of methodological improvements may fine-tune the performance of detection
models in future work. These may include more complex or varied network structures, data
augmentation strategies or the inclusion of post-processing techniques incorporating contextual
knowledge relevant to the location being examined (Tiede et al., 2018). It is also important to
understand the rates of deterioration of results when transferring models to unknown scenarios
and geographies.

Technical difficulties with regards to computational capacity may be influenced by the fact
that analyst interaction cycles will need to be integrated with neural network training and
classification in as close to real time as possible. As an analyst manually detects structures in
a settlement, a machine learning model, computing in parallel, will use this information to
automatically detect the remaining structures in the settlement. It is possible that future work will
include the development of an evolving evaluation framework, incorporating manually tagged
structures that will inform the stop criteria for the adaptation i.e., the proportion of adaptation
data for a new location that would be required as input from an analyst to the machine learning
model, so that it would automatically detect the remaining structures.

One of the key barriers to the adoption of computer-assisted methods to practical work-
flows is related to trust. In order to facilitate a transition from current fully manual operational
pipelines to more efficient methods, the user needs to be aware of the performance metrics
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of the technology in certain scenarios and become accustomed to it. For automated or semi-
automated methods to be adopted, it is necessary for the technology to be seamlessly integrated
into the manual processing work-flow. Even though there are some design criteria that might
not optimize the algorithmic performance, it may still provide opportunity for greater synergy
between humans and machines. For instance, producing false positives carries a psychological
weight, since deleting false positives may seem like an arduous task which hampers progress.

Human experts apply contextual knowledge, such as reasoning about structures from their
shadows, for example that a structure with internal shadows may not have a roof. Although there
is some research on how to include context in automatic image analysis (Tiede et al., 2018), it
is difficult to encode this type of knowledge or reasoning into current object detection methods.
Sometimes what can be complicated for the machine is trivial for humans and what can be tedious
for humans might be easy for machines. In this context, the key for further systems might be to
evaluate the collective performance of the humans assisted by algorithms as a whole – and do
not evaluate independently humans and algorithms. Further research should therefore consider
the entire workflow, as the assessment of satellite imagery involves some degree of interpretation
and use of contextual information which can pose difficulties for automated processing.

Privacy, sensitivity and ethical dilemmas are major considerations for this work. With the
emergence of high resolution, high frequency imagery that is easily accessible, it is imperative
that we seriously consider the privacy implications and the potential unintended consequences
of sharing or using satellite imagery. In humanitarian contexts, vulnerable populations are
particularly exposed, and any experimental uses and new methodologies should occur under
agreed normative frameworks which follow ethical and responsible use principles.

6. Conclusion
In this paper we have discussed a number of applications of machine learning to remote sensing
in humanitarian emergencies. For the majority of these applications, there are some prototype-
stage results, but as yet there are few systems with the accuracy and robustness to be deployed
in a crisis situation. However, given the pace of advances in computer vision, where in other
domains neural networks are matching or even surpassing human performance, it is likely
that more practical systems will emerge. In our own work looking at remote sensing structure
identification, of which the experiments reported in this paper are the most recent, we have
obtained significantly better results in the last 1-2 years with the availability of better models
and tools. This, combined with the increasing availability of remote sensing image data and even
video from new satellites and drones, is likely to increase the possibilities for automation.

At the same time, humanitarian scenarios are particularly challenging in that a very high
degree of accuracy is needed, and in some cases approximative results may be worse than useless.
Time also matters. In this regard, machine learning in these applications is somewhat similar to
medical imaging. Important decisions must be made on the basis of what may sometimes be
small and indistinct features in an image. However, whereas medical imaging normally involves
carefully calibrated equipment, high resolution remote sensing imagery is affected by many
factors including the sensor, climate, time of day, and other factors.

We conclude that while there are many promising lines of research into humanitarian
applications of machine learning on remote sensing data, fully automated processing is not
yet practical in the majority of cases. Structure counting in refugee settlements is an example,
though one which also illustrates the possibilities of combined human-machine analysis, i.e.
where human experts help to calibrate a model and also to post-process the model’s output.
Augmentation of human capabilities is therefore a good strategy, to aim for human experts
aided by machine learning systems to be able to carry out analysis with high throughput and
yet maintaining the necessary levels of quality control.

Data Accessibility. Shapefile data on structure locations in refugee settlements is available at
https://data.humdata.org/organization/un-operational-satellite-appplications-programme-unosat,
and http://unitar.org/unosat/maps
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